UNPKG

@stdlib/math-base-tools-evalrational-compile-c

Version:

Compile a C function for evaluating a rational function.

58 lines (55 loc) 1.49 kB
static const {{dtype}} {{FNAME}}_COEFFICIENTS_P = { {{P}} }; static const {{dtype}} {{FNAME}}_COEFFICIENTS_Q = { {{Q}} }; /** * Evaluates a rational function (i.e., the ratio of two polynomials described by the coefficients stored in \\(P\\) and \\(Q\\)). * * ## Notes * * - Coefficients should be sorted in ascending degree. * - The implementation uses [Horner's rule][horners-method] for efficient computation. * * [horners-method]: https://en.wikipedia.org/wiki/Horner%27s_method * * @param x value at which to evaluate the rational function * @return evaluated rational function */ static {{dtype}} {{fname}}( const {{dtype}} x ) { {{dtype}} s1; {{dtype}} s2; {{dtype}} ax; {{dtype}} ix; int i; if ( x == 0.0{{dtype_suffix}} ) { return {{ratio}}; } if ( x < 0.0{{dtype_suffix}} ) { ax = -x; } else { ax = x; } if ( ax <= 1.0{{dtype_suffix}} ) { s1 = {{FNAME}}_COEFFICIENTS_P[ {{num_coefficients}} ]; s2 = {{FNAME}}_COEFFICIENTS_Q[ {{num_coefficients}} ]; for ( i = {{num_coefficients}}-1; i >= 0; i-- ) { s1 *= x; s2 *= x; s1 += {{FNAME}}_COEFFICIENTS_P[ i ]; s2 += {{FNAME}}_COEFFICIENTS_Q[ i ]; } } else { ix = 1.0{{dtype_suffix}} / x; // use inverse to avoid overflow s1 = {{FNAME}}_COEFFICIENTS_P[ 0 ]; s2 = {{FNAME}}_COEFFICIENTS_Q[ 0 ]; for ( i = 1; i <= {{num_coefficients}}; i++ ) { s1 *= ix; s2 *= ix; s1 += {{FNAME}}_COEFFICIENTS_P[ i ]; s2 += {{FNAME}}_COEFFICIENTS_Q[ i ]; } } return s1 / s2; }