UNPKG

@stdlib/math-base-special-sici

Version:
186 lines (175 loc) 5.18 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * * ## Notice * * The original C code, long comment, copyright, license, and constants are from [Cephes]{@link http://www.netlib.org/cephes}. The implementation follows the original, but has been modified for JavaScript. * * ```text * Copyright 1984, 1987, 1989 by Stephen L. Moshier * * Some software in this archive may be from the book _Methods and Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster International, 1989) or from the Cephes Mathematical Library, a commercial product. In either event, it is copyrighted by the author. What you see here may be used freely but it comes with no support or guarantee. * * Stephen L. Moshier * moshier@na-net.ornl.gov * ``` */ 'use strict'; // MODULES // var isInfinite = require( '@stdlib/math-base-assert-is-infinite' ); var isnan = require( '@stdlib/math-base-assert-is-nan' ); var cos = require( '@stdlib/math-base-special-cos' ); var sin = require( '@stdlib/math-base-special-sin' ); var ln = require( '@stdlib/math-base-special-ln' ); var HALF_PI = require( '@stdlib/constants-float64-half-pi' ); var GAMMA = require( '@stdlib/constants-float64-eulergamma' ); var NINF = require( '@stdlib/constants-float64-ninf' ); var polyvalFN4 = require( './polyval_fn4.js' ); var polyvalFD4 = require( './polyval_fd4.js' ); var polyvalFN8 = require( './polyval_fn8.js' ); var polyvalFD8 = require( './polyval_fd8.js' ); var polyvalGN4 = require( './polyval_gn4.js' ); var polyvalGD4 = require( './polyval_gd4.js' ); var polyvalGN8 = require( './polyval_gn8.js' ); var polyvalGD8 = require( './polyval_gd8.js' ); var polyvalSN = require( './polyval_sn.js' ); var polyvalSD = require( './polyval_sd.js' ); var polyvalCN = require( './polyval_cn.js' ); var polyvalCD = require( './polyval_cd.js' ); // MAIN // /** * Computes the sine and cosine integrals and assigns results to a provided output array. * * ## Method * * - The integrals are approximated by rational functions. * * - For \\( x > 8 \\), auxiliary functions \\( f(x) \\) and \\( g(x) \\) are employed such that * * ```tex * \operatorname{Ci}(x) = f(x) \sin(x) - g(x) \cos(x) \\ * \operatorname{Si}(x) = \pi/2 - f(x) \cos(x) - g(x) \sin(x) * ``` * * ## Notes * * - Absolute error on test interval \\( \[0,50\] \\), except relative when greater than \\( 1 \\): * * | arithmetic | function | # trials | peak | rms | * |:----------:|:-----------:|:--------:|:-------:|:-------:| * | IEEE | Si | 30000 | 4.4e-16 | 7.3e-17 | * | IEEE | Ci | 30000 | 6.9e-16 | 5.1e-17 | * * @private * @param {number} x - input value * @param {Collection} out - output array * @param {integer} stride - output array stride * @param {NonNegativeInteger} offset - output array index offset * @returns {Collection} output array * * @example * var v = sici( 3.0, [ 0.0, 0.0 ], 1, 0 ); * // returns [ ~1.849, ~0.12 ] * * @example * var v = sici( 0.0, [ 0.0, 0.0 ], 1, 0 ); * // returns [ 0.0, -Infinity ] * * @example * var v = sici( -9.0, [ 0.0, 0.0 ], 1, 0 ); * // returns [ ~-1.665, ~0.055 ] * * @example * var v = sici( NaN, [ 0.0, 0.0 ], 1, 0 ); * // returns [ NaN, NaN ] */ function sici( x, out, stride, offset ) { var sgn; var si; var ci; var c; var f; var g; var s; var z; if ( isnan( x ) ) { out[ offset ] = NaN; out[ offset + stride ] = NaN; return out; } if ( x < 0.0 ) { sgn = -1; x = -x; } else { sgn = 0; } if ( x === 0.0 ) { out[ offset ] = 0.0; out[ offset + stride ] = NINF; return out; } if ( x > 1.0e9 ) { if ( isInfinite( x ) ) { if ( sgn === -1 ) { si = -HALF_PI; ci = NaN; } else { si = HALF_PI; ci = 0.0; } out[ offset ] = si; out[ offset + stride ] = ci; return out; } si = HALF_PI - ( cos( x ) / x ); ci = sin( x ) / x; } if ( x > 4.0 ) { s = sin( x ); c = cos( x ); z = 1.0 / ( x*x ); if ( x < 8.0 ) { f = polyvalFN4( z ) / ( x * polyvalFD4( z ) ); g = z * polyvalGN4( z ) / polyvalGD4( z ); } else { f = polyvalFN8( z ) / ( x * polyvalFD8( z ) ); g = z * polyvalGN8( z ) / polyvalGD8( z ); } si = HALF_PI - ( f*c ) - ( g*s ); if ( sgn ) { si = -si; } ci = ( f*s ) - ( g*c ); out[ offset ] = si; out[ offset + stride ] = ci; return out; } z = x * x; s = x * polyvalSN( z ) / polyvalSD( z ); c = z * polyvalCN( z ) / polyvalCD( z ); if ( sgn ) { s = -s; } si = s; ci = GAMMA + ln( x ) + c; // real part if x < 0 out[ offset ] = si; out[ offset + stride ] = ci; return out; } // EXPORTS // module.exports = sici;