UNPKG

@stdlib/math-base-special-kernel-sin

Version:

Compute the sine of a double-precision floating-point number on [-π/4, π/4].

134 lines (123 loc) 3.75 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * * ## Notice * * The following copyright, license, and long comment were part of the original implementation available as part of [FreeBSD]{@link https://svnweb.freebsd.org/base/release/9.3.0/lib/msun/src/k_sin.c}. The implementation follows the original, but has been modified for JavaScript. * * ```text * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ``` */ 'use strict'; // VARIABLES // var S1 = -1.66666666666666324348e-01; // 0xBFC55555, 0x55555549 var S2 = 8.33333333332248946124e-03; // 0x3F811111, 0x1110F8A6 var S3 = -1.98412698298579493134e-04; // 0xBF2A01A0, 0x19C161D5 var S4 = 2.75573137070700676789e-06; // 0x3EC71DE3, 0x57B1FE7D var S5 = -2.50507602534068634195e-08; // 0xBE5AE5E6, 0x8A2B9CEB var S6 = 1.58969099521155010221e-10; // 0x3DE5D93A, 0x5ACFD57C // MAIN // /** * Computes the sine on \\( \approx \[-\pi/4, \pi/4] \\) (except on \\(-0\\)), where \\( \pi/4 \approx 0.7854 \\). * * ## Method * * - Since \\( \sin(-x) = -\sin(x) \\), we need only to consider positive \\(x\\). * * - Callers must return \\( \sin(-0) = -0 \\) without calling here since our odd polynomial is not evaluated in a way that preserves \\(-0\\). Callers may do the optimization \\( \sin(x) \approx x \\) for tiny \\(x\\). * * - \\( \sin(x) \\) is approximated by a polynomial of degree \\(13\\) on \\( \left\[0,\tfrac{pi}{4}\right] \\) * * ```tex * \sin(x) \approx x + S_1 \cdot x^3 + \ldots + S_6 \cdot x^{13} * ``` * * where * * ```tex * \left| \frac{\sin(x)}{x} \left( 1 + S_1 \cdot x + S_2 \cdot x + S_3 \cdot x + S_4 \cdot x + S_5 \cdot x + S_6 \cdot x \right) \right| \le 2^{-58} * ``` * * - We have * * ```tex * \sin(x+y) = \sin(x) + \sin'(x') \cdot y \approx \sin(x) + (1-x*x/2) \cdot y * ``` * * For better accuracy, let * * ```tex * r = x^3 * \left( S_2 + x^2 \cdot \left( S_3 + x^2 * \left( S_4 + x^2 \cdot ( S_5+x^2 \cdot S_6 ) \right) \right) \right) * ``` * * then * * ```tex * \sin(x) = x + \left( S_1 \cdot x + ( x \cdot (r-y/2) + y ) \right) * ``` * * @param {number} x - input value (in radians, assumed to be bounded by `~pi/4` in magnitude) * @param {number} y - tail of `x` * @returns {number} sine * * @example * var v = kernelSin( 0.0, 0.0 ); * // returns ~0.0 * * @example * var v = kernelSin( 3.141592653589793/6.0, 0.0 ); * // returns ~0.5 * * @example * var v = kernelSin( 0.619, 9.279e-18 ); * // returns ~0.58 * * @example * var v = kernelSin( NaN, 0.0 ); * // returns NaN * * @example * var v = kernelSin( 3.0, NaN ); * // returns NaN * * @example * var v = kernelSin( NaN, NaN ); * // returns NaN */ function kernelSin( x, y ) { var r; var v; var w; var z; z = x * x; w = z * z; r = S2 + (z * (S3 + (z*S4))) + (z * w * (S5 + (z*S6))); v = z * x; if ( y === 0.0 ) { return x + (v * (S1 + (z*r))); } return x - (((z*((0.5*y) - (v*r))) - y) - (v*S1)); } // EXPORTS // module.exports = kernelSin;