UNPKG

@stdlib/math-base-special-gammaincinv

Version:

Inverse incomplete gamma function.

80 lines (67 loc) 2.09 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var gammaln = require( '@stdlib/math-base-special-gammaln' ); var ln = require( '@stdlib/math-base-special-ln' ); var LN_SQRT_TWO_PI = require( '@stdlib/constants-float64-ln-sqrt-two-pi' ); var SMALLEST_FLOAT32 = require( '@stdlib/constants-float32-smallest-normal' ); var MAX_FLOAT32 = require( '@stdlib/constants-float32-max' ); var chepolsum = require( './chepolsum.js' ); var polyvalC = require( './polyval_c.js' ); var polyvalD = require( './polyval_d.js' ); // VARIABLES // var C6 = 0.30865217988013567769; // MAIN // /** * Computes the Stirling series corresponding to asymptotic series for the logarithm of the gamma function. * * ```tex * \frac{1}{12x}-\frac{1}{360x^3}\ldots; x \ge 3 * ``` * * @private * @param {number} x - input value * @returns {number} function value */ function stirling( x ) { var z; if ( x < SMALLEST_FLOAT32 ) { return MAX_FLOAT32; } if ( x < 1.0 ) { return gammaln( x+1.0 ) - ( (x+0.5) * ln(x) ) + x - LN_SQRT_TWO_PI; } if ( x < 2.0 ) { return gammaln( x ) - ( (x-0.5) * ln(x) ) + x - LN_SQRT_TWO_PI; } if ( x < 3.0 ) { return gammaln( x-1.0 ) - ( (x-0.5) * ln(x) ) + x - LN_SQRT_TWO_PI + ln( x-1.0 ); // eslint-disable-line max-len } if ( x < 12.0 ) { z = ( 18.0/( x*x ) ) - 1.0; return chepolsum( 17, z ) / ( 12.0*x ); } z = 1.0 / ( x * x ); if ( x < 1000.0 ) { return polyvalC( z ) / ( C6+z ) / x; } return polyvalD( z ) / x; } // EXPORTS // module.exports = stirling;