UNPKG

@stdlib/math-base-special-gammaincinv

Version:

Inverse incomplete gamma function.

99 lines (88 loc) 3.04 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; /* * Translated from the Fortran module by * ---------------------------------------------------------------------- * Authors: * Amparo Gil (U. Cantabria, Santander, Spain) * e-mail: amparo.gil@unican.es * Javier Segura (U. Cantabria, Santander, Spain) * e-mail: javier.segura@unican.es * Nico M. Temme (CWI, Amsterdam, The Netherlands) * e-mail: nico.temme@cwi.nl * --------------------------------------------------------------------- */ // MODULES // var isnan = require( '@stdlib/math-base-assert-is-nan' ); var FLOAT32_SMALLEST = require( '@stdlib/constants-float32-smallest-normal' ); var PINF = require( '@stdlib/constants-float64-pinf' ); var compute = require( './compute.js' ); // MAIN // /** * Inverts the lower gamma function; i.e., computes `xr` such that `P(a,xr) = p`. * * ## Method * * The present code uses different methods of computation depending on the values of the input values: Taylor, asymptotic expansions and high-order Newton methods. * * ## Notes * * - The claimed accuracy obtained using this inversion routine is near `1e-12`. * * ## References * * - A. Gil, J. Segura and N.M. Temme, GammaCHI: a package for the inversion and computation of the gamma and chi-square distribution functions (central and noncentral). Computer Physics Commun * - A. Gil, J. Segura and N.M. Temme. Efficient and accurate algorithms for the computation and inversion of the incomplete gamma function ratios. SIAM J Sci Comput. (2012) 34(6), A2965-A2981 * * @param {Probability} p - probability value * @param {number} a - scale parameter * @param {boolean} [upper=false] - boolean indicating if the function should invert the upper tail of the incomplete gamma function instead; i.e., compute `xr` such that `Q(a,xr) = p`. * @returns {number} function value of the inverse */ function gammaincinv( p, a, upper ) { if ( isnan( p ) || isnan( a ) ) { return NaN; } if ( a < FLOAT32_SMALLEST ) { return NaN; } if ( p > 1.0 || p < 0.0 ) { return NaN; } // Case: invert upper gamma function if ( upper === true ) { if ( p === 0.0 ) { return PINF; } if ( p === 1.0 ) { return 0.0; } return compute( a, 1.0-p, p ); } // Default: invert lower gamma function if ( p === 0.0 ) { return 0.0; } if ( p === 1.0 ) { return PINF; } return compute( a, p, 1.0-p ); } // EXPORTS // module.exports = gammaincinv;