UNPKG

@stdlib/math-base-special-fresnels

Version:

Compute the Fresnel integral S(x).

65 lines (58 loc) 3.02 kB
/** * @license Apache-2.0 * * Copyright (c) 2024 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* This is a generated file. Do not edit directly. */ 'use strict'; // MAIN // /** * Evaluates a rational function (i.e., the ratio of two polynomials described by the coefficients stored in \\(P\\) and \\(Q\\)). * * ## Notes * * - Coefficients should be sorted in ascending degree. * - The implementation uses [Horner's rule][horners-method] for efficient computation. * * [horners-method]: https://en.wikipedia.org/wiki/Horner%27s_method * * @private * @param {number} x - value at which to evaluate the rational function * @returns {number} evaluated rational function */ function evalrational( x ) { var ax; var s1; var s2; if ( x === 0.0 ) { return 1.0; } if ( x < 0.0 ) { ax = -x; } else { ax = x; } if ( ax <= 1.0 ) { s1 = 1.8695871016278324e-22 + (x * (8.363544356306774e-19 + (x * (1.375554606332618e-15 + (x * (1.0826804113902088e-12 + (x * (4.4534441586175015e-10 + (x * (9.828524436884223e-8 + (x * (0.000011513882611188428 + (x * (0.0006840793809153931 + (x * (0.018764858409257526 + (x * (0.1971028335255234 + (x * (0.5044420736433832 + (x * 0.0))))))))))))))))))))); // eslint-disable-line max-len s2 = 1.8695871016278324e-22 + (x * (8.391588162831187e-19 + (x * (1.3879653125957886e-15 + (x * (1.1027321506624028e-12 + (x * (4.6068072814652043e-10 + (x * (1.0431458965757199e-7 + (x * (0.000012754507566772912 + (x * (0.0008146791071843061 + (x * (0.02536037414203388 + (x * (0.33774898912002 + (x * (1.4749575992512833 + (x * 1.0))))))))))))))))))))); // eslint-disable-line max-len } else { x = 1.0 / x; s1 = 0.0 + (x * (0.5044420736433832 + (x * (0.1971028335255234 + (x * (0.018764858409257526 + (x * (0.0006840793809153931 + (x * (0.000011513882611188428 + (x * (9.828524436884223e-8 + (x * (4.4534441586175015e-10 + (x * (1.0826804113902088e-12 + (x * (1.375554606332618e-15 + (x * (8.363544356306774e-19 + (x * 1.8695871016278324e-22))))))))))))))))))))); // eslint-disable-line max-len s2 = 1.0 + (x * (1.4749575992512833 + (x * (0.33774898912002 + (x * (0.02536037414203388 + (x * (0.0008146791071843061 + (x * (0.000012754507566772912 + (x * (1.0431458965757199e-7 + (x * (4.6068072814652043e-10 + (x * (1.1027321506624028e-12 + (x * (1.3879653125957886e-15 + (x * (8.391588162831187e-19 + (x * 1.8695871016278324e-22))))))))))))))))))))); // eslint-disable-line max-len } return s1 / s2; } // EXPORTS // module.exports = evalrational;