UNPKG

@stdlib/math-base-special-cos

Version:

Compute the cosine of a number.

133 lines (116 loc) 3.62 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * * ## Notice * * The following copyright, license, and long comment were part of the original implementation available as part of [FreeBSD]{@link https://svnweb.freebsd.org/base/release/9.3.0/lib/msun/src/s_cos.c}. The implementation follows the original, but has been modified for JavaScript. * * ```text * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ``` */ 'use strict'; // MODULES // var getHighWord = require( '@stdlib/number-float64-base-get-high-word' ); var kernelCos = require( '@stdlib/math-base-special-kernel-cos' ); var kernelSin = require( '@stdlib/math-base-special-kernel-sin' ); var rempio2 = require( '@stdlib/math-base-special-rempio2' ); var ABS_MASK = require( '@stdlib/constants-float64-high-word-abs-mask' ); var EXPONENT_MASK = require( '@stdlib/constants-float64-high-word-exponent-mask' ); // VARIABLES // // Scratch array for storing temporary values: var buffer = [ 0.0, 0.0 ]; // WARNING: not thread safe // High word of π/4: 0x3fe921fb => 00111111111010010010000111111011 var HIGH_WORD_PIO4 = 0x3fe921fb|0; // asm type annotation // High word of 2^-27: 0x3e400000 => 00111110010000000000000000000000 var HIGH_WORD_TWO_NEG_27 = 0x3e400000|0; // asm type annotation // MAIN // /** * Computes the cosine of a number. * * ## Method * * - Let \\(S\\), \\(C\\), and \\(T\\) denote the \\(\sin\\), \\(\cos\\), and \\(\tan\\), respectively, on \\(\[-\pi/4, +\pi/4\]\\). * * - Reduce the argument \\(x\\) to \\(y1+y2 = x-k\pi/2\\) in \\(\[-\pi/4, +\pi/4\]\\), and let \\(n = k \mod 4\\). * * - We have * * | n | sin(x) | cos(x) | tan(x) | * | - | ------ | ------ | ------ | * | 0 | S | C | T | * | 1 | C | -S | -1/T | * | 2 | -S | -C | T | * | 3 | -C | S | -1/T | * * @param {number} x - input value (in radians) * @returns {number} cosine * * @example * var v = cos( 0.0 ); * // returns 1.0 * * @example * var v = cos( 3.141592653589793/4.0 ); * // returns ~0.707 * * @example * var v = cos( -3.141592653589793/6.0 ); * // returns ~0.866 * * @example * var v = cos( NaN ); * // returns NaN */ function cos( x ) { var ix; var n; ix = getHighWord( x ); ix &= ABS_MASK; // Case: |x| ~< pi/4 if ( ix <= HIGH_WORD_PIO4 ) { // Case: x < 2**-27 if ( ix < HIGH_WORD_TWO_NEG_27 ) { return 1.0; } return kernelCos( x, 0.0 ); } // Case: cos(Inf or NaN) is NaN */ if ( ix >= EXPONENT_MASK ) { return NaN; } // Case: Argument reduction needed... n = rempio2( x, buffer ); switch ( n & 3 ) { case 0: return kernelCos( buffer[ 0 ], buffer[ 1 ] ); case 1: return -kernelSin( buffer[ 0 ], buffer[ 1 ] ); case 2: return -kernelCos( buffer[ 0 ], buffer[ 1 ] ); default: return kernelSin( buffer[ 0 ], buffer[ 1 ] ); } } // EXPORTS // module.exports = cos;