@stdlib/blas-ext-base-ssumkbn
Version:
Calculate the sum of single-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.
91 lines (80 loc) • 2.51 kB
JavaScript
/**
* @license Apache-2.0
*
* Copyright (c) 2020 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
;
// MODULES //
var float64ToFloat32 = require( '@stdlib/number-float64-base-to-float32' );
var abs = require( '@stdlib/math-base-special-abs' );
// MAIN //
/**
* Computes the sum of single-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.
*
* ## Method
*
* - This implementation uses an "improved Kahan–Babuška algorithm", as described by Neumaier (1974).
*
* ## References
*
* - Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." _Zeitschrift Für Angewandte Mathematik Und Mechanik_ 54 (1): 39–51. doi:[10.1002/zamm.19740540106](https://doi.org/10.1002/zamm.19740540106).
*
* @param {PositiveInteger} N - number of indexed elements
* @param {Float32Array} x - input array
* @param {integer} stride - stride length
* @param {NonNegativeInteger} offset - starting index
* @returns {number} sum
*
* @example
* var Float32Array = require( '@stdlib/array-float32' );
* var floor = require( '@stdlib/math-base-special-floor' );
*
* var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
* var N = floor( x.length / 2 );
*
* var v = ssumkbn( N, x, 2, 1 );
* // returns 5.0
*/
function ssumkbn( N, x, stride, offset ) {
var sum;
var ix;
var v;
var t;
var c;
var i;
if ( N <= 0 ) {
return 0.0;
}
if ( N === 1 || stride === 0 ) {
return x[ offset ];
}
ix = offset;
sum = 0.0;
c = 0.0;
for ( i = 0; i < N; i++ ) {
v = x[ ix ];
t = float64ToFloat32( sum + v );
if ( abs( sum ) >= abs( v ) ) {
c = float64ToFloat32( c + float64ToFloat32( float64ToFloat32( sum-t ) + v ) ); // eslint-disable-line max-len
} else {
c = float64ToFloat32( c + float64ToFloat32( float64ToFloat32( v-t ) + sum ) ); // eslint-disable-line max-len
}
sum = t;
ix += stride;
}
return float64ToFloat32( sum + c );
}
// EXPORTS //
module.exports = ssumkbn;