UNPKG

@stdlib/blas-ext-base-gsumkbn

Version:

Calculate the sum of strided array elements using an improved Kahan–Babuška algorithm.

89 lines (78 loc) 2.1 kB
/** * @license Apache-2.0 * * Copyright (c) 2020 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var abs = require( '@stdlib/math-base-special-abs' ); // MAIN // /** * Computes the sum of strided array elements using an improved Kahan–Babuška algorithm. * * ## Method * * - This implementation uses an "improved Kahan–Babuška algorithm", as described by Neumaier (1974). * * ## References * * - Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." _Zeitschrift Für Angewandte Mathematik Und Mechanik_ 54 (1): 39–51. doi:[10.1002/zamm.19740540106](https://doi.org/10.1002/zamm.19740540106). * * @param {PositiveInteger} N - number of indexed elements * @param {NumericArray} x - input array * @param {integer} stride - stride length * @param {NonNegativeInteger} offset - starting index * @returns {number} sum * * @example * var floor = require( '@stdlib/math-base-special-floor' ); * * var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ]; * var N = floor( x.length / 2 ); * * var v = gsumkbn( N, x, 2, 1 ); * // returns 5.0 */ function gsumkbn( N, x, stride, offset ) { var sum; var ix; var v; var t; var c; var i; if ( N <= 0 ) { return 0.0; } if ( N === 1 || stride === 0 ) { return x[ offset ]; } ix = offset; sum = 0.0; c = 0.0; for ( i = 0; i < N; i++ ) { v = x[ ix ]; t = sum + v; if ( abs( sum ) >= abs( v ) ) { c += (sum-t) + v; } else { c += (v-t) + sum; } sum = t; ix += stride; } return sum + c; } // EXPORTS // module.exports = gsumkbn;