UNPKG

@stdlib/blas-ext-base-gcusumkbn

Version:

Calculate the cumulative sum of strided array elements using an improved Kahan–Babuška algorithm.

98 lines (87 loc) 2.24 kB
/** * @license Apache-2.0 * * Copyright (c) 2020 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var abs = require( '@stdlib/math-base-special-abs' ); // MAIN // /** * Computes the cumulative sum of strided array elements using an improved Kahan–Babuška algorithm. * * ## Method * * - This implementation uses an "improved Kahan–Babuška algorithm", as described by Neumaier (1974). * * ## References * * - Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." _Zeitschrift Für Angewandte Mathematik Und Mechanik_ 54 (1): 39–51. doi:[10.1002/zamm.19740540106](https://doi.org/10.1002/zamm.19740540106). * * @param {PositiveInteger} N - number of indexed elements * @param {number} sum - initial sum * @param {NumericArray} x - input array * @param {integer} strideX - `x` stride length * @param {NumericArray} y - output array * @param {integer} strideY - `y` stride length * @returns {NumericArray} output array * * @example * var x = [ 1.0, -2.0, 2.0 ]; * var y = [ 0.0, 0.0, 0.0 ]; * * var v = gcusumkbn( x.length, 0.0, x, 1, y, 1 ); * // returns [ 1.0, -1.0, 1.0 ] */ function gcusumkbn( N, sum, x, strideX, y, strideY ) { var ix; var iy; var s; var v; var t; var c; var i; if ( N <= 0 ) { return y; } if ( strideX < 0 ) { ix = (1-N) * strideX; } else { ix = 0; } if ( strideY < 0 ) { iy = (1-N) * strideY; } else { iy = 0; } s = sum; c = 0.0; for ( i = 0; i < N; i++ ) { v = x[ ix ]; t = s + v; if ( abs( s ) >= abs( v ) ) { c += (s-t) + v; } else { c += (v-t) + s; } s = t; y[ iy ] = s + c; ix += strideX; iy += strideY; } return y; } // EXPORTS // module.exports = gcusumkbn;