@stdlib/blas-ext-base-gcusumkbn
Version:
Calculate the cumulative sum of strided array elements using an improved Kahan–Babuška algorithm.
98 lines (87 loc) • 2.24 kB
JavaScript
/**
* @license Apache-2.0
*
* Copyright (c) 2020 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
;
// MODULES //
var abs = require( '@stdlib/math-base-special-abs' );
// MAIN //
/**
* Computes the cumulative sum of strided array elements using an improved Kahan–Babuška algorithm.
*
* ## Method
*
* - This implementation uses an "improved Kahan–Babuška algorithm", as described by Neumaier (1974).
*
* ## References
*
* - Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." _Zeitschrift Für Angewandte Mathematik Und Mechanik_ 54 (1): 39–51. doi:[10.1002/zamm.19740540106](https://doi.org/10.1002/zamm.19740540106).
*
* @param {PositiveInteger} N - number of indexed elements
* @param {number} sum - initial sum
* @param {NumericArray} x - input array
* @param {integer} strideX - `x` stride length
* @param {NumericArray} y - output array
* @param {integer} strideY - `y` stride length
* @returns {NumericArray} output array
*
* @example
* var x = [ 1.0, -2.0, 2.0 ];
* var y = [ 0.0, 0.0, 0.0 ];
*
* var v = gcusumkbn( x.length, 0.0, x, 1, y, 1 );
* // returns [ 1.0, -1.0, 1.0 ]
*/
function gcusumkbn( N, sum, x, strideX, y, strideY ) {
var ix;
var iy;
var s;
var v;
var t;
var c;
var i;
if ( N <= 0 ) {
return y;
}
if ( strideX < 0 ) {
ix = (1-N) * strideX;
} else {
ix = 0;
}
if ( strideY < 0 ) {
iy = (1-N) * strideY;
} else {
iy = 0;
}
s = sum;
c = 0.0;
for ( i = 0; i < N; i++ ) {
v = x[ ix ];
t = s + v;
if ( abs( s ) >= abs( v ) ) {
c += (s-t) + v;
} else {
c += (v-t) + s;
}
s = t;
y[ iy ] = s + c;
ix += strideX;
iy += strideY;
}
return y;
}
// EXPORTS //
module.exports = gcusumkbn;