UNPKG

@stdlib/blas-ext-base-gcusumkbn2

Version:

Calculate the cumulative sum of strided array elements using a second-order iterative Kahan–Babuška algorithm.

109 lines (97 loc) 2.49 kB
/** * @license Apache-2.0 * * Copyright (c) 2020 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var abs = require( '@stdlib/math-base-special-abs' ); // MAIN // /** * Computes the cumulative sum of strided array elements using a second-order iterative Kahan–Babuška algorithm. * * ## Method * * - This implementation uses a second-order iterative Kahan–Babuška algorithm, as described by Klein (2005). * * ## References * * - Klein, Andreas. 2005. "A Generalized Kahan-Babuška-Summation-Algorithm." _Computing_ 76 (3): 279–93. doi:[10.1007/s00607-005-0139-x](https://doi.org/10.1007/s00607-005-0139-x). * * @param {PositiveInteger} N - number of indexed elements * @param {number} sum - initial sum * @param {NumericArray} x - input array * @param {integer} strideX - `x` stride length * @param {NumericArray} y - output array * @param {integer} strideY - `y` stride length * @returns {NumericArray} output array * * @example * var x = [ 1.0, -2.0, 2.0 ]; * var y = [ 0.0, 0.0, 0.0 ]; * * var v = gcusumkbn2( x.length, 0.0, x, 1, y, 1 ); * // returns [ 1.0, -1.0, 1.0 ] */ function gcusumkbn2( N, sum, x, strideX, y, strideY ) { var ccs; var ix; var iy; var cs; var cc; var v; var t; var c; var i; if ( N <= 0 ) { return y; } if ( strideX < 0 ) { ix = (1-N) * strideX; } else { ix = 0; } if ( strideY < 0 ) { iy = (1-N) * strideY; } else { iy = 0; } ccs = 0.0; // second order correction term for lost low order bits cs = 0.0; // first order correction term for lost low order bits for ( i = 0; i < N; i++ ) { v = x[ ix ]; t = sum + v; if ( abs( sum ) >= abs( v ) ) { c = (sum-t) + v; } else { c = (v-t) + sum; } sum = t; t = cs + c; if ( abs( cs ) >= abs( c ) ) { cc = (cs-t) + c; } else { cc = (c-t) + cs; } cs = t; ccs += cc; y[ iy ] = sum + cs + ccs; ix += strideX; iy += strideY; } return y; } // EXPORTS // module.exports = gcusumkbn2;