UNPKG

@stdlib/blas-ext-base-dsortsh

Version:

Sort a double-precision floating-point strided array using Shellsort.

111 lines (96 loc) 3.08 kB
/** * @license Apache-2.0 * * Copyright (c) 2020 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isNegativeZero = require( '@stdlib/math-base-assert-is-negative-zero' ); var isnan = require( '@stdlib/math-base-assert-is-nan' ); var GAPS = require( './gaps.json' ); // VARIABLES // var NGAPS = GAPS.length; // MAIN // /** * Sorts a double-precision floating-point strided array using Shellsort. * * ## Notes * * - This implementation uses the gap sequence proposed by Ciura (2001). * * ## References * * - Shell, Donald L. 1959. "A High-Speed Sorting Procedure." _Communications of the ACM_ 2 (7). Association for Computing Machinery: 30–32. doi:[10.1145/368370.368387](https://doi.org/10.1145/368370.368387). * - Ciura, Marcin. 2001. "Best Increments for the Average Case of Shellsort." In _Fundamentals of Computation Theory_, 106–17. Springer Berlin Heidelberg. doi:[10.1007/3-540-44669-9\_12](https://doi.org/10.1007/3-540-44669-9_12). * * @param {PositiveInteger} N - number of indexed elements * @param {number} order - sort order * @param {Float64Array} x - input array * @param {integer} stride - index increment * @returns {Float64Array} input array * * @example * var Float64Array = require( '@stdlib/array-float64' ); * * var x = new Float64Array( [ 1.0, -2.0, 3.0, -4.0 ] ); * * dsortsh( x.length, 1.0, x, 1 ); * // x => <Float64Array>[ -4.0, -2.0, 1.0, 3.0 ] */ function dsortsh( N, order, x, stride ) { var offset; var flg; var gap; var v; var u; var i; var j; var k; if ( N <= 0 || order === 0.0 ) { return x; } // For a positive stride, sorting in decreasing order is equivalent to providing a negative stride and sorting in increasing order, and, for a negative stride, sorting in decreasing order is equivalent to providing a positive stride and sorting in increasing order... if ( order < 0.0 ) { stride *= -1; } if ( stride < 0 ) { offset = (1-N) * stride; } else { offset = 0; } for ( i = 0; i < NGAPS; i++ ) { gap = GAPS[ i ]; for ( j = gap; j < N; j++ ) { v = x[ offset+(j*stride) ]; // If `NaN`, the current value is already sorted to its place... if ( isnan( v ) ) { continue; } // Perform insertion sort on the "gapped" subarray... flg = isNegativeZero( v ); for ( k = j; k >= gap; k -= gap ) { u = x[ offset+((k-gap)*stride) ]; if ( u <= v && !(flg && u === v) ) { break; } x[ offset+(k*stride) ] = u; } x[ offset+(k*stride) ] = v; } } return x; } // EXPORTS // module.exports = dsortsh;