UNPKG

@sschepis/resolang

Version:

ResoLang - Core quantum resonance computation library for browser and Node.js

623 lines (529 loc) 20.3 kB
/** * Quantum-Enhanced Turing Machine Simulator for P ≠ NP Proof * * This module implements a Turing machine simulator with quantum-inspired features * for tracking self-referential complexity. It integrates with the Gödel encoding * system and self-referential complexity tracker to demonstrate the key concepts * in Muñoz de la Cuesta's P ≠ NP proof. * * The simulator tracks every computational step and identifies self-referential * operations where the machine accesses its own description or prior configurations. */ import { ResonantFragment, EntangledNode, Prime } from '../resolang'; import { tensor, entropy, collapse } from '../operators'; import { toFixed } from '../utils'; import { SelfReferentialTracker, ComputationStep, VerificationResult, ComplexityAnalysis } from './self-referential-complexity'; import { TuringConfiguration, TuringMachineEncoder, Transition, QuantumGodelEncoder, GodelComplexityReport } from './godel-encoding'; // ============================================================================ // TURING MACHINE CORE COMPONENTS // ============================================================================ /** * Tape representation with infinite (expandable) memory */ export class TuringTape { private cells: Array<string>; private headPosition: i32; private blankSymbol: string; constructor(initialContent: string = "", blankSymbol: string = "B") { this.cells = new Array<string>(); this.blankSymbol = blankSymbol; this.headPosition = 0; // Initialize tape with content if (initialContent.length > 0) { for (let i = 0; i < initialContent.length; i++) { this.cells.push(initialContent.charAt(i)); } } else { this.cells.push(this.blankSymbol); } } /** * Read symbol at current head position */ public read(): string { this.ensureCapacity(); return this.cells[this.headPosition]; } /** * Write symbol at current head position */ public write(symbol: string): void { this.ensureCapacity(); this.cells[this.headPosition] = symbol; } /** * Move head left or right */ public moveHead(direction: string): void { if (direction === "L") { this.headPosition = Math.max(0, this.headPosition - 1); } else if (direction === "R") { this.headPosition++; } this.ensureCapacity(); } /** * Get current head position */ public getHeadPosition(): i32 { return this.headPosition; } /** * Get tape content as string (visible portion) */ public getContent(): string { let content = ""; for (let i = 0; i < this.cells.length; i++) { if (this.cells[i] !== this.blankSymbol || i <= this.headPosition + 2) { content += this.cells[i]; } } return content.length > 0 ? content : this.blankSymbol; } /** * Ensure tape has sufficient capacity */ private ensureCapacity(): void { while (this.headPosition >= this.cells.length) { this.cells.push(this.blankSymbol); } } /** * Create quantum representation of tape state */ public toQuantumState(): ResonantFragment { const tapeContent = this.getContent(); const positionEncoding = `pos_${this.headPosition}`; const combined = `${tapeContent}_${positionEncoding}`; return ResonantFragment.encode(combined); } } /** * Quantum-enhanced Turing machine state */ export class QuantumTuringMachine { private machine: TuringMachineEncoder; private tape: TuringTape; private currentState: string; private stepCount: i32; private maxSteps: i32; // Quantum and complexity tracking private complexityTracker: SelfReferentialTracker; private godelEncoder: QuantumGodelEncoder; private quantumStates: Array<ResonantFragment>; private stateHistory: Array<string>; // Computation results private halted: bool; private accepted: bool; constructor( machine: TuringMachineEncoder, input: string, maxSteps: i32 = 1000 ) { this.machine = machine; this.tape = new TuringTape(input); this.currentState = machine.startState; this.stepCount = 0; this.maxSteps = maxSteps; this.halted = false; this.accepted = false; // Initialize tracking systems this.complexityTracker = new SelfReferentialTracker(machine.toString()); this.godelEncoder = new QuantumGodelEncoder(machine); this.quantumStates = new Array<ResonantFragment>(); this.stateHistory = new Array<string>(); // Record initial configuration this.recordCurrentConfiguration(); } /** * Execute a single step of the Turing machine */ public step(): bool { if (this.halted || this.stepCount >= this.maxSteps) { return false; } // Read current tape symbol const currentSymbol = this.tape.read(); // Find applicable transition const transition = this.findTransition(this.currentState, currentSymbol); if (!transition) { // No transition found - halt and reject this.halted = true; this.accepted = false; return false; } // Execute transition this.tape.write(transition.writeSymbol); this.tape.moveHead(transition.direction); // Update state const previousState = this.currentState; this.currentState = transition.toState; this.stepCount++; // Record configuration and check for self-reference this.recordCurrentConfiguration(); this.checkSelfreferentialAccess(transition, previousState); // Check for acceptance if (this.isAcceptState(this.currentState)) { this.halted = true; this.accepted = true; } return true; } /** * Run the machine until halt or max steps */ public run(): MachineResult { const startTime = Date.now(); while (this.step()) { // Continue until halt or max steps } const totalTime = Date.now() - startTime; // Generate comprehensive results return this.generateResult(totalTime); } /** * Find transition for current state and symbol */ private findTransition(state: string, symbol: string): Transition | null { for (let i = 0; i < this.machine.transitions.length; i++) { const t = this.machine.transitions[i]; if (t.fromState === state && t.readSymbol === symbol) { return t; } } return null; } /** * Check if state is an accept state */ private isAcceptState(state: string): bool { for (let i = 0; i < this.machine.acceptStates.length; i++) { if (this.machine.acceptStates[i] === state) { return true; } } return false; } /** * Record current configuration for complexity analysis */ private recordCurrentConfiguration(): void { // Create Turing configuration const config = new TuringConfiguration( this.currentState, this.tape.getContent(), this.tape.getHeadPosition(), this.stepCount ); // Add to Gödel encoder this.godelEncoder.addConfiguration(config); // Create computation step for complexity tracker const transitionDesc = `step_${this.stepCount}_${this.currentState}`; const step = new ComputationStep( this.stepCount, this.currentState, this.tape.getHeadPosition(), this.tape.getContent(), transitionDesc ); this.complexityTracker.addStep(step); // Store quantum state const quantumState = this.tape.toQuantumState(); this.quantumStates.push(quantumState); this.stateHistory.push(this.currentState); } /** * Check for self-referential access in current step */ private checkSelfreferentialAccess(transition: Transition, previousState: string): void { // Check if transition involves state introspection if (this.isIntrospectiveTransition(transition)) { console.log(`[SELF-REF] Step ${this.stepCount}: Introspective transition detected`); } // Check if returning to previous state (self-referential) if (transition.toState === previousState) { console.log(`[SELF-REF] Step ${this.stepCount}: State loop detected - returning to ${previousState}`); } // Check if accessing prior tape configurations for (let i = 0; i < this.stepCount - 1; i++) { if (this.godelEncoder.isSelfreferentialAccess(this.stepCount, i)) { console.log(`[SELF-REF] Step ${this.stepCount}: Accessing prior configuration from step ${i}`); } } } /** * Check if transition involves machine introspection */ private isIntrospectiveTransition(transition: Transition): bool { // Check for introspective patterns in state names const introspectiveKeywords = ["check", "verify", "loop", "return", "compare"]; for (let i = 0; i < introspectiveKeywords.length; i++) { if (transition.toState.includes(introspectiveKeywords[i]) || transition.fromState.includes(introspectiveKeywords[i])) { return true; } } return false; } /** * Generate comprehensive machine result */ private generateResult(executionTime: i32): MachineResult { const complexityAnalysis = this.complexityTracker.getComplexityAnalysis(); const godelReport = this.godelEncoder.getComplexityReport(); const fundamentalLemma = this.complexityTracker.verifyFundamentalLemma(executionTime); return new MachineResult( this.accepted, this.halted, this.stepCount, executionTime, this.tape.getContent(), complexityAnalysis, godelReport, fundamentalLemma, this.quantumStates ); } /** * Get current machine status */ public getStatus(): string { return `State: ${this.currentState}, Steps: ${this.stepCount}, Halted: ${this.halted}, Accepted: ${this.accepted}`; } } /** * Comprehensive machine execution result */ export class MachineResult { public accepted: bool; public halted: bool; public totalSteps: i32; public executionTime: i32; public finalTapeContent: string; public complexityAnalysis: ComplexityAnalysis; public godelReport: GodelComplexityReport; public fundamentalLemmaVerification: VerificationResult; public quantumStates: Array<ResonantFragment>; constructor( accepted: bool, halted: bool, totalSteps: i32, executionTime: i32, finalTapeContent: string, complexityAnalysis: ComplexityAnalysis, godelReport: GodelComplexityReport, fundamentalLemmaVerification: VerificationResult, quantumStates: Array<ResonantFragment> ) { this.accepted = accepted; this.halted = halted; this.totalSteps = totalSteps; this.executionTime = executionTime; this.finalTapeContent = finalTapeContent; this.complexityAnalysis = complexityAnalysis; this.godelReport = godelReport; this.fundamentalLemmaVerification = fundamentalLemmaVerification; this.quantumStates = quantumStates; } /** * Calculate self-referential complexity ratio */ public getSelfreferentialRatio(): f64 { return this.complexityAnalysis.ratio; } /** * Check if computation demonstrates exponential self-referential growth */ public hasExponentialComplexity(): bool { return this.complexityAnalysis.classification === "HIGH" || this.complexityAnalysis.classification === "EXTREME"; } public toString(): string { return `MachineResult(accepted=${this.accepted}, steps=${this.totalSteps}, ` + `complexity_ratio=${toFixed(this.getSelfreferentialRatio(), 3)}, ` + `classification=${this.complexityAnalysis.classification})`; } } // ============================================================================ // SPECIALIZED MACHINES FOR P ≠ NP DEMONSTRATION // ============================================================================ /** * Factory for creating machines that demonstrate self-referential complexity */ export class PvsNPMachineFactory { /** * Create a simple machine with self-referential behavior */ public static createSelfreferentialMachine(): TuringMachineEncoder { const states = ["q0", "q1", "q_check", "q_loop", "qaccept", "qreject"]; const alphabet = ["0", "1", "B"]; const transitions = [ // Normal computation new Transition("q0", "0", "q1", "1", "R"), new Transition("q0", "1", "q_check", "0", "L"), // Enter self-referential phase // Self-referential checking phase new Transition("q_check", "1", "q_loop", "1", "L"), // Check prior state new Transition("q_check", "0", "q0", "0", "R"), // Return to q0 (self-referential!) // Loop detection (highly self-referential) new Transition("q_loop", "0", "q_check", "0", "R"), // Loop back to check new Transition("q_loop", "1", "qaccept", "1", "R"), // Accept new Transition("q_loop", "B", "qreject", "B", "R") // Reject ]; return new TuringMachineEncoder(states, alphabet, transitions, "q0", ["qaccept"]); } /** * Create a machine that simulates binary search behavior (for SAT demonstration) */ public static createBinarySearchMachine(): TuringMachineEncoder { const states = ["q_start", "q_search", "q_verify", "q_left", "q_right", "qaccept", "qreject"]; const alphabet = ["0", "1", "X", "B"]; const transitions = [ // Start phase new Transition("q_start", "0", "q_search", "X", "R"), new Transition("q_start", "1", "q_search", "X", "R"), new Transition("q_start", "B", "qaccept", "B", "R"), // Search phase (self-referential - checks previously marked positions) new Transition("q_search", "0", "q_verify", "0", "L"), // Verify previous choices new Transition("q_search", "1", "q_verify", "1", "L"), // Verify previous choices new Transition("q_search", "X", "q_left", "X", "R"), // Skip marked, go left // Verification (highly self-referential) new Transition("q_verify", "X", "q_search", "X", "R"), // Return to search new Transition("q_verify", "0", "q_right", "0", "R"), // Go right branch new Transition("q_verify", "1", "q_left", "1", "R"), // Go left branch // Branch exploration new Transition("q_left", "0", "q_verify", "X", "L"), // Mark and verify new Transition("q_left", "1", "qreject", "1", "R"), // Conflict new Transition("q_right", "1", "q_verify", "X", "L"), // Mark and verify new Transition("q_right", "0", "qreject", "0", "R"), // Conflict new Transition("q_right", "B", "qaccept", "B", "R") // Success ]; return new TuringMachineEncoder(states, alphabet, transitions, "q_start", ["qaccept"]); } /** * Create a machine that demonstrates exponential self-referential complexity */ public static createExponentialComplexityMachine(): TuringMachineEncoder { const states = ["q0", "q1", "q2", "q_double", "q_verify_all", "qaccept"]; const alphabet = ["0", "1", "B"]; // This machine doubles its verification work at each step const transitions = [ new Transition("q0", "0", "q1", "1", "R"), new Transition("q0", "1", "q_double", "0", "L"), // Doubling phase - each step requires checking all previous steps new Transition("q_double", "0", "q_verify_all", "0", "L"), // Verify ALL previous new Transition("q_double", "1", "q_verify_all", "1", "L"), // Verify ALL previous // Verification requires checking every prior configuration new Transition("q_verify_all", "0", "q1", "0", "R"), // Check against q1 new Transition("q_verify_all", "1", "q2", "1", "R"), // Check against q2 new Transition("q_verify_all", "B", "q0", "B", "R"), // Back to start // Secondary states for verification new Transition("q1", "0", "q2", "1", "R"), new Transition("q1", "1", "q_verify_all", "0", "L"), // Recursive verification new Transition("q2", "0", "qaccept", "0", "R"), new Transition("q2", "1", "q_verify_all", "1", "L") // Recursive verification ]; return new TuringMachineEncoder(states, alphabet, transitions, "q0", ["qaccept"]); } } // ============================================================================ // EXAMPLE DEMONSTRATIONS // ============================================================================ /** * Example 1: Basic Turing Machine Operation */ export function demonstrateBasicTuringMachine(): void { console.log("=== Example 1: Basic Turing Machine Operation ==="); const machine = PvsNPMachineFactory.createSelfreferentialMachine(); const tm = new QuantumTuringMachine(machine, "010", 50); console.log("Initial status: " + tm.getStatus()); // Run a few steps manually for (let i = 0; i < 5 && tm.step(); i++) { console.log(`Step ${i + 1}: ${tm.getStatus()}`); } // Complete the run const result = tm.run(); console.log(`Final result: ${result.toString()}`); console.log(`Fundamental lemma verified: ${result.fundamentalLemmaVerification.verified}`); } /** * Example 2: Binary Search Machine Simulation */ export function demonstrateBinarySearchMachine(): void { console.log("\n=== Example 2: Binary Search Machine ==="); const machine = PvsNPMachineFactory.createBinarySearchMachine(); const tm = new QuantumTuringMachine(machine, "0110", 100); const result = tm.run(); console.log(`Binary search result: ${result.toString()}`); console.log(`Self-referential complexity: ${result.complexityAnalysis.selfreferentialSteps}/${result.totalSteps}`); console.log(`Complexity classification: ${result.complexityAnalysis.classification}`); console.log(`Has exponential complexity: ${result.hasExponentialComplexity()}`); } /** * Example 3: Exponential Complexity Demonstration */ export function demonstrateExponentialComplexity(): void { console.log("\n=== Example 3: Exponential Complexity Machine ==="); const machine = PvsNPMachineFactory.createExponentialComplexityMachine(); const tm = new QuantumTuringMachine(machine, "01", 200); const result = tm.run(); console.log(`Exponential machine result: ${result.toString()}`); console.log(`Gödel report: ${result.godelReport.toString()}`); console.log(`Fundamental lemma constant: ${toFixed(result.fundamentalLemmaVerification.constant, 3)}`); // Show complexity growth pattern console.log("Complexity growth pattern:"); for (let i = 0; i < Math.min(result.complexityAnalysis.growthPattern.length, 10); i++) { console.log(` Step ${i}: ${result.complexityAnalysis.growthPattern[i]} cumulative self-ref steps`); } } /** * Example 4: Quantum State Evolution */ export function demonstrateQuantumStateEvolution(): void { console.log("\n=== Example 4: Quantum State Evolution ==="); const machine = PvsNPMachineFactory.createSelfreferentialMachine(); const tm = new QuantumTuringMachine(machine, "11", 30); const result = tm.run(); console.log("Quantum state evolution:"); for (let i = 0; i < Math.min(result.quantumStates.length, 8); i++) { const state = result.quantumStates[i]; console.log(` Step ${i}: entropy = ${toFixed(entropy(state), 4)}, coeffs = ${state.coeffs.size}`); } // Show quantum entanglement between states if (result.quantumStates.length >= 2) { const entanglement = tensor(result.quantumStates[0], result.quantumStates[result.quantumStates.length - 1]); console.log(`Initial-Final entanglement entropy: ${toFixed(entropy(entanglement), 4)}`); } } /** * Run all Turing machine examples */ export function runAllTuringMachineExamples(): void { console.log("🔧 Quantum-Enhanced Turing Machine Simulator"); console.log("Demonstrating self-referential complexity in computation\n"); demonstrateBasicTuringMachine(); demonstrateBinarySearchMachine(); demonstrateExponentialComplexity(); demonstrateQuantumStateEvolution(); console.log("\n✅ Turing machine simulator operational!"); console.log("Phase 1 mathematical foundation layer complete!"); console.log("Ready for Phase 2: SAT solver implementation."); }