@sschepis/resolang
Version:
ResoLang - Core quantum resonance computation library for browser and Node.js
623 lines (529 loc) • 20.3 kB
text/typescript
/**
* Quantum-Enhanced Turing Machine Simulator for P ≠ NP Proof
*
* This module implements a Turing machine simulator with quantum-inspired features
* for tracking self-referential complexity. It integrates with the Gödel encoding
* system and self-referential complexity tracker to demonstrate the key concepts
* in Muñoz de la Cuesta's P ≠ NP proof.
*
* The simulator tracks every computational step and identifies self-referential
* operations where the machine accesses its own description or prior configurations.
*/
import {
ResonantFragment,
EntangledNode,
Prime
} from '../resolang';
import {
tensor,
entropy,
collapse
} from '../operators';
import { toFixed } from '../utils';
import {
SelfReferentialTracker,
ComputationStep,
VerificationResult,
ComplexityAnalysis
} from './self-referential-complexity';
import {
TuringConfiguration,
TuringMachineEncoder,
Transition,
QuantumGodelEncoder,
GodelComplexityReport
} from './godel-encoding';
// ============================================================================
// TURING MACHINE CORE COMPONENTS
// ============================================================================
/**
* Tape representation with infinite (expandable) memory
*/
export class TuringTape {
private cells: Array<string>;
private headPosition: i32;
private blankSymbol: string;
constructor(initialContent: string = "", blankSymbol: string = "B") {
this.cells = new Array<string>();
this.blankSymbol = blankSymbol;
this.headPosition = 0;
// Initialize tape with content
if (initialContent.length > 0) {
for (let i = 0; i < initialContent.length; i++) {
this.cells.push(initialContent.charAt(i));
}
} else {
this.cells.push(this.blankSymbol);
}
}
/**
* Read symbol at current head position
*/
public read(): string {
this.ensureCapacity();
return this.cells[this.headPosition];
}
/**
* Write symbol at current head position
*/
public write(symbol: string): void {
this.ensureCapacity();
this.cells[this.headPosition] = symbol;
}
/**
* Move head left or right
*/
public moveHead(direction: string): void {
if (direction === "L") {
this.headPosition = Math.max(0, this.headPosition - 1);
} else if (direction === "R") {
this.headPosition++;
}
this.ensureCapacity();
}
/**
* Get current head position
*/
public getHeadPosition(): i32 {
return this.headPosition;
}
/**
* Get tape content as string (visible portion)
*/
public getContent(): string {
let content = "";
for (let i = 0; i < this.cells.length; i++) {
if (this.cells[i] !== this.blankSymbol || i <= this.headPosition + 2) {
content += this.cells[i];
}
}
return content.length > 0 ? content : this.blankSymbol;
}
/**
* Ensure tape has sufficient capacity
*/
private ensureCapacity(): void {
while (this.headPosition >= this.cells.length) {
this.cells.push(this.blankSymbol);
}
}
/**
* Create quantum representation of tape state
*/
public toQuantumState(): ResonantFragment {
const tapeContent = this.getContent();
const positionEncoding = `pos_${this.headPosition}`;
const combined = `${tapeContent}_${positionEncoding}`;
return ResonantFragment.encode(combined);
}
}
/**
* Quantum-enhanced Turing machine state
*/
export class QuantumTuringMachine {
private machine: TuringMachineEncoder;
private tape: TuringTape;
private currentState: string;
private stepCount: i32;
private maxSteps: i32;
// Quantum and complexity tracking
private complexityTracker: SelfReferentialTracker;
private godelEncoder: QuantumGodelEncoder;
private quantumStates: Array<ResonantFragment>;
private stateHistory: Array<string>;
// Computation results
private halted: bool;
private accepted: bool;
constructor(
machine: TuringMachineEncoder,
input: string,
maxSteps: i32 = 1000
) {
this.machine = machine;
this.tape = new TuringTape(input);
this.currentState = machine.startState;
this.stepCount = 0;
this.maxSteps = maxSteps;
this.halted = false;
this.accepted = false;
// Initialize tracking systems
this.complexityTracker = new SelfReferentialTracker(machine.toString());
this.godelEncoder = new QuantumGodelEncoder(machine);
this.quantumStates = new Array<ResonantFragment>();
this.stateHistory = new Array<string>();
// Record initial configuration
this.recordCurrentConfiguration();
}
/**
* Execute a single step of the Turing machine
*/
public step(): bool {
if (this.halted || this.stepCount >= this.maxSteps) {
return false;
}
// Read current tape symbol
const currentSymbol = this.tape.read();
// Find applicable transition
const transition = this.findTransition(this.currentState, currentSymbol);
if (!transition) {
// No transition found - halt and reject
this.halted = true;
this.accepted = false;
return false;
}
// Execute transition
this.tape.write(transition.writeSymbol);
this.tape.moveHead(transition.direction);
// Update state
const previousState = this.currentState;
this.currentState = transition.toState;
this.stepCount++;
// Record configuration and check for self-reference
this.recordCurrentConfiguration();
this.checkSelfreferentialAccess(transition, previousState);
// Check for acceptance
if (this.isAcceptState(this.currentState)) {
this.halted = true;
this.accepted = true;
}
return true;
}
/**
* Run the machine until halt or max steps
*/
public run(): MachineResult {
const startTime = Date.now();
while (this.step()) {
// Continue until halt or max steps
}
const totalTime = Date.now() - startTime;
// Generate comprehensive results
return this.generateResult(totalTime);
}
/**
* Find transition for current state and symbol
*/
private findTransition(state: string, symbol: string): Transition | null {
for (let i = 0; i < this.machine.transitions.length; i++) {
const t = this.machine.transitions[i];
if (t.fromState === state && t.readSymbol === symbol) {
return t;
}
}
return null;
}
/**
* Check if state is an accept state
*/
private isAcceptState(state: string): bool {
for (let i = 0; i < this.machine.acceptStates.length; i++) {
if (this.machine.acceptStates[i] === state) {
return true;
}
}
return false;
}
/**
* Record current configuration for complexity analysis
*/
private recordCurrentConfiguration(): void {
// Create Turing configuration
const config = new TuringConfiguration(
this.currentState,
this.tape.getContent(),
this.tape.getHeadPosition(),
this.stepCount
);
// Add to Gödel encoder
this.godelEncoder.addConfiguration(config);
// Create computation step for complexity tracker
const transitionDesc = `step_${this.stepCount}_${this.currentState}`;
const step = new ComputationStep(
this.stepCount,
this.currentState,
this.tape.getHeadPosition(),
this.tape.getContent(),
transitionDesc
);
this.complexityTracker.addStep(step);
// Store quantum state
const quantumState = this.tape.toQuantumState();
this.quantumStates.push(quantumState);
this.stateHistory.push(this.currentState);
}
/**
* Check for self-referential access in current step
*/
private checkSelfreferentialAccess(transition: Transition, previousState: string): void {
// Check if transition involves state introspection
if (this.isIntrospectiveTransition(transition)) {
console.log(`[SELF-REF] Step ${this.stepCount}: Introspective transition detected`);
}
// Check if returning to previous state (self-referential)
if (transition.toState === previousState) {
console.log(`[SELF-REF] Step ${this.stepCount}: State loop detected - returning to ${previousState}`);
}
// Check if accessing prior tape configurations
for (let i = 0; i < this.stepCount - 1; i++) {
if (this.godelEncoder.isSelfreferentialAccess(this.stepCount, i)) {
console.log(`[SELF-REF] Step ${this.stepCount}: Accessing prior configuration from step ${i}`);
}
}
}
/**
* Check if transition involves machine introspection
*/
private isIntrospectiveTransition(transition: Transition): bool {
// Check for introspective patterns in state names
const introspectiveKeywords = ["check", "verify", "loop", "return", "compare"];
for (let i = 0; i < introspectiveKeywords.length; i++) {
if (transition.toState.includes(introspectiveKeywords[i]) ||
transition.fromState.includes(introspectiveKeywords[i])) {
return true;
}
}
return false;
}
/**
* Generate comprehensive machine result
*/
private generateResult(executionTime: i32): MachineResult {
const complexityAnalysis = this.complexityTracker.getComplexityAnalysis();
const godelReport = this.godelEncoder.getComplexityReport();
const fundamentalLemma = this.complexityTracker.verifyFundamentalLemma(executionTime);
return new MachineResult(
this.accepted,
this.halted,
this.stepCount,
executionTime,
this.tape.getContent(),
complexityAnalysis,
godelReport,
fundamentalLemma,
this.quantumStates
);
}
/**
* Get current machine status
*/
public getStatus(): string {
return `State: ${this.currentState}, Steps: ${this.stepCount}, Halted: ${this.halted}, Accepted: ${this.accepted}`;
}
}
/**
* Comprehensive machine execution result
*/
export class MachineResult {
public accepted: bool;
public halted: bool;
public totalSteps: i32;
public executionTime: i32;
public finalTapeContent: string;
public complexityAnalysis: ComplexityAnalysis;
public godelReport: GodelComplexityReport;
public fundamentalLemmaVerification: VerificationResult;
public quantumStates: Array<ResonantFragment>;
constructor(
accepted: bool,
halted: bool,
totalSteps: i32,
executionTime: i32,
finalTapeContent: string,
complexityAnalysis: ComplexityAnalysis,
godelReport: GodelComplexityReport,
fundamentalLemmaVerification: VerificationResult,
quantumStates: Array<ResonantFragment>
) {
this.accepted = accepted;
this.halted = halted;
this.totalSteps = totalSteps;
this.executionTime = executionTime;
this.finalTapeContent = finalTapeContent;
this.complexityAnalysis = complexityAnalysis;
this.godelReport = godelReport;
this.fundamentalLemmaVerification = fundamentalLemmaVerification;
this.quantumStates = quantumStates;
}
/**
* Calculate self-referential complexity ratio
*/
public getSelfreferentialRatio(): f64 {
return this.complexityAnalysis.ratio;
}
/**
* Check if computation demonstrates exponential self-referential growth
*/
public hasExponentialComplexity(): bool {
return this.complexityAnalysis.classification === "HIGH" ||
this.complexityAnalysis.classification === "EXTREME";
}
public toString(): string {
return `MachineResult(accepted=${this.accepted}, steps=${this.totalSteps}, ` +
`complexity_ratio=${toFixed(this.getSelfreferentialRatio(), 3)}, ` +
`classification=${this.complexityAnalysis.classification})`;
}
}
// ============================================================================
// SPECIALIZED MACHINES FOR P ≠ NP DEMONSTRATION
// ============================================================================
/**
* Factory for creating machines that demonstrate self-referential complexity
*/
export class PvsNPMachineFactory {
/**
* Create a simple machine with self-referential behavior
*/
public static createSelfreferentialMachine(): TuringMachineEncoder {
const states = ["q0", "q1", "q_check", "q_loop", "qaccept", "qreject"];
const alphabet = ["0", "1", "B"];
const transitions = [
// Normal computation
new Transition("q0", "0", "q1", "1", "R"),
new Transition("q0", "1", "q_check", "0", "L"), // Enter self-referential phase
// Self-referential checking phase
new Transition("q_check", "1", "q_loop", "1", "L"), // Check prior state
new Transition("q_check", "0", "q0", "0", "R"), // Return to q0 (self-referential!)
// Loop detection (highly self-referential)
new Transition("q_loop", "0", "q_check", "0", "R"), // Loop back to check
new Transition("q_loop", "1", "qaccept", "1", "R"), // Accept
new Transition("q_loop", "B", "qreject", "B", "R") // Reject
];
return new TuringMachineEncoder(states, alphabet, transitions, "q0", ["qaccept"]);
}
/**
* Create a machine that simulates binary search behavior (for SAT demonstration)
*/
public static createBinarySearchMachine(): TuringMachineEncoder {
const states = ["q_start", "q_search", "q_verify", "q_left", "q_right", "qaccept", "qreject"];
const alphabet = ["0", "1", "X", "B"];
const transitions = [
// Start phase
new Transition("q_start", "0", "q_search", "X", "R"),
new Transition("q_start", "1", "q_search", "X", "R"),
new Transition("q_start", "B", "qaccept", "B", "R"),
// Search phase (self-referential - checks previously marked positions)
new Transition("q_search", "0", "q_verify", "0", "L"), // Verify previous choices
new Transition("q_search", "1", "q_verify", "1", "L"), // Verify previous choices
new Transition("q_search", "X", "q_left", "X", "R"), // Skip marked, go left
// Verification (highly self-referential)
new Transition("q_verify", "X", "q_search", "X", "R"), // Return to search
new Transition("q_verify", "0", "q_right", "0", "R"), // Go right branch
new Transition("q_verify", "1", "q_left", "1", "R"), // Go left branch
// Branch exploration
new Transition("q_left", "0", "q_verify", "X", "L"), // Mark and verify
new Transition("q_left", "1", "qreject", "1", "R"), // Conflict
new Transition("q_right", "1", "q_verify", "X", "L"), // Mark and verify
new Transition("q_right", "0", "qreject", "0", "R"), // Conflict
new Transition("q_right", "B", "qaccept", "B", "R") // Success
];
return new TuringMachineEncoder(states, alphabet, transitions, "q_start", ["qaccept"]);
}
/**
* Create a machine that demonstrates exponential self-referential complexity
*/
public static createExponentialComplexityMachine(): TuringMachineEncoder {
const states = ["q0", "q1", "q2", "q_double", "q_verify_all", "qaccept"];
const alphabet = ["0", "1", "B"];
// This machine doubles its verification work at each step
const transitions = [
new Transition("q0", "0", "q1", "1", "R"),
new Transition("q0", "1", "q_double", "0", "L"),
// Doubling phase - each step requires checking all previous steps
new Transition("q_double", "0", "q_verify_all", "0", "L"), // Verify ALL previous
new Transition("q_double", "1", "q_verify_all", "1", "L"), // Verify ALL previous
// Verification requires checking every prior configuration
new Transition("q_verify_all", "0", "q1", "0", "R"), // Check against q1
new Transition("q_verify_all", "1", "q2", "1", "R"), // Check against q2
new Transition("q_verify_all", "B", "q0", "B", "R"), // Back to start
// Secondary states for verification
new Transition("q1", "0", "q2", "1", "R"),
new Transition("q1", "1", "q_verify_all", "0", "L"), // Recursive verification
new Transition("q2", "0", "qaccept", "0", "R"),
new Transition("q2", "1", "q_verify_all", "1", "L") // Recursive verification
];
return new TuringMachineEncoder(states, alphabet, transitions, "q0", ["qaccept"]);
}
}
// ============================================================================
// EXAMPLE DEMONSTRATIONS
// ============================================================================
/**
* Example 1: Basic Turing Machine Operation
*/
export function demonstrateBasicTuringMachine(): void {
console.log("=== Example 1: Basic Turing Machine Operation ===");
const machine = PvsNPMachineFactory.createSelfreferentialMachine();
const tm = new QuantumTuringMachine(machine, "010", 50);
console.log("Initial status: " + tm.getStatus());
// Run a few steps manually
for (let i = 0; i < 5 && tm.step(); i++) {
console.log(`Step ${i + 1}: ${tm.getStatus()}`);
}
// Complete the run
const result = tm.run();
console.log(`Final result: ${result.toString()}`);
console.log(`Fundamental lemma verified: ${result.fundamentalLemmaVerification.verified}`);
}
/**
* Example 2: Binary Search Machine Simulation
*/
export function demonstrateBinarySearchMachine(): void {
console.log("\n=== Example 2: Binary Search Machine ===");
const machine = PvsNPMachineFactory.createBinarySearchMachine();
const tm = new QuantumTuringMachine(machine, "0110", 100);
const result = tm.run();
console.log(`Binary search result: ${result.toString()}`);
console.log(`Self-referential complexity: ${result.complexityAnalysis.selfreferentialSteps}/${result.totalSteps}`);
console.log(`Complexity classification: ${result.complexityAnalysis.classification}`);
console.log(`Has exponential complexity: ${result.hasExponentialComplexity()}`);
}
/**
* Example 3: Exponential Complexity Demonstration
*/
export function demonstrateExponentialComplexity(): void {
console.log("\n=== Example 3: Exponential Complexity Machine ===");
const machine = PvsNPMachineFactory.createExponentialComplexityMachine();
const tm = new QuantumTuringMachine(machine, "01", 200);
const result = tm.run();
console.log(`Exponential machine result: ${result.toString()}`);
console.log(`Gödel report: ${result.godelReport.toString()}`);
console.log(`Fundamental lemma constant: ${toFixed(result.fundamentalLemmaVerification.constant, 3)}`);
// Show complexity growth pattern
console.log("Complexity growth pattern:");
for (let i = 0; i < Math.min(result.complexityAnalysis.growthPattern.length, 10); i++) {
console.log(` Step ${i}: ${result.complexityAnalysis.growthPattern[i]} cumulative self-ref steps`);
}
}
/**
* Example 4: Quantum State Evolution
*/
export function demonstrateQuantumStateEvolution(): void {
console.log("\n=== Example 4: Quantum State Evolution ===");
const machine = PvsNPMachineFactory.createSelfreferentialMachine();
const tm = new QuantumTuringMachine(machine, "11", 30);
const result = tm.run();
console.log("Quantum state evolution:");
for (let i = 0; i < Math.min(result.quantumStates.length, 8); i++) {
const state = result.quantumStates[i];
console.log(` Step ${i}: entropy = ${toFixed(entropy(state), 4)}, coeffs = ${state.coeffs.size}`);
}
// Show quantum entanglement between states
if (result.quantumStates.length >= 2) {
const entanglement = tensor(result.quantumStates[0], result.quantumStates[result.quantumStates.length - 1]);
console.log(`Initial-Final entanglement entropy: ${toFixed(entropy(entanglement), 4)}`);
}
}
/**
* Run all Turing machine examples
*/
export function runAllTuringMachineExamples(): void {
console.log("🔧 Quantum-Enhanced Turing Machine Simulator");
console.log("Demonstrating self-referential complexity in computation\n");
demonstrateBasicTuringMachine();
demonstrateBinarySearchMachine();
demonstrateExponentialComplexity();
demonstrateQuantumStateEvolution();
console.log("\n✅ Turing machine simulator operational!");
console.log("Phase 1 mathematical foundation layer complete!");
console.log("Ready for Phase 2: SAT solver implementation.");
}