UNPKG

@sschepis/resolang

Version:

ResoLang - Core quantum resonance computation library for browser and Node.js

514 lines (423 loc) 15.8 kB
/** * Self-Referential Complexity Implementation for P ≠ NP Proof * * This module implements the core concept from Javier Muñoz de la Cuesta's proof: * Self-referential complexity S(M,x) = |{t | δ(qt, wt|pt) is self-referential}| * * A computational step is self-referential if it accesses: * - Prior configuration Cs (s < t) * - Machine description ⟨M⟩ * - Computable functions of these */ import { ResonantFragment, EntangledNode, Prime } from '../resolang'; import { tensor, collapse, entropy } from '../operators'; import { toFixed } from '../utils'; // ============================================================================ // CORE DATA STRUCTURES // ============================================================================ /** * Represents a single computational step in a Turing machine */ export class ComputationStep { public stepNumber: i32; public state: string; public tapePosition: i32; public tapeContent: string; public transition: string; public timestamp: i64; public godelNumber: u64; constructor( stepNumber: i32, state: string, tapePosition: i32, tapeContent: string, transition: string ) { this.stepNumber = stepNumber; this.state = state; this.tapePosition = tapePosition; this.tapeContent = tapeContent; this.transition = transition; this.timestamp = Date.now(); this.godelNumber = this.calculateGodelNumber(); } /** * Calculate Gödel number for this configuration * Uses prime encoding: state × tape × position */ private calculateGodelNumber(): u64 { const stateHash = this.hashString(this.state); const tapeHash = this.hashString(this.tapeContent); const positionPrime = this.getPrime(this.tapePosition + 1); return stateHash * tapeHash * positionPrime; } private hashString(str: string): u64 { let hash: u64 = 5381; for (let i = 0; i < str.length; i++) { hash = ((hash << 5) + hash) + str.charCodeAt(i); } return hash; } private getPrime(n: i32): u64 { const primes: u64[] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]; return primes[n % primes.length]; } /** * Check if this step references a prior configuration */ public referencesConfiguration(otherStep: ComputationStep): bool { // Check for state reference if (this.transition.includes(otherStep.state)) { return true; } // Check for tape content reference if (this.tapeContent.includes(otherStep.tapeContent.substr(0, 3))) { return true; } // Check for position reference if (this.tapePosition === otherStep.tapePosition) { return true; } return false; } } /** * Tracks self-referential complexity during algorithm execution */ export class SelfReferentialTracker { private steps: Array<ComputationStep>; private selfreferentialSteps: Array<i32>; private holographicMemory: HolographicMemory; private machineDescription: ResonantFragment; constructor(machineDescription: string) { this.steps = new Array<ComputationStep>(); this.selfreferentialSteps = new Array<i32>(); this.holographicMemory = new HolographicMemory(); this.machineDescription = ResonantFragment.encode(machineDescription); } /** * Add a new computation step and check for self-referential properties */ public addStep(step: ComputationStep): void { this.steps.push(step); // Store step in holographic memory for quantum access const stepFragment = this.encodeStep(step); this.holographicMemory.store(`step_${step.stepNumber}`, stepFragment); // Check if this step is self-referential if (this.isSelfreferentialStep(step)) { this.selfreferentialSteps.push(step.stepNumber); } } /** * Core implementation of self-referential detection * A step is self-referential if it accesses prior configurations or machine description */ private isSelfreferentialStep(currentStep: ComputationStep): bool { const currentFragment = this.encodeStep(currentStep); // Check access to machine description const machineAccess = tensor(currentFragment, this.machineDescription); if (entropy(machineAccess) > 0.1) { return true; } // Check access to prior configurations for (let i = 0; i < this.steps.length - 1; i++) { const priorStep = this.steps[i]; // Direct reference check if (currentStep.referencesConfiguration(priorStep)) { return true; } // Quantum entanglement check const priorFragment = this.encodeStep(priorStep); const entanglement = tensor(currentFragment, priorFragment); if (entropy(entanglement) > 0.05) { return true; } } return false; } /** * Encode computation step as quantum fragment */ private encodeStep(step: ComputationStep): ResonantFragment { const configString = `${step.state}_${step.tapeContent}_${step.tapePosition}`; return ResonantFragment.encode(configString); } /** * Calculate total self-referential complexity S(M,x) */ public getSelfreferentialComplexity(): i32 { return this.selfreferentialSteps.length; } /** * Get ratio of self-referential steps to total steps */ public getComplexityRatio(): f64 { if (this.steps.length === 0) return 0.0; return f64(this.selfreferentialSteps.length) / f64(this.steps.length); } /** * Verify the fundamental lemma: T(n) ≥ c · S(M,x) */ public verifyFundamentalLemma(totalTime: i32): VerificationResult { const selfreferentialComplexity = this.getSelfreferentialComplexity(); if (selfreferentialComplexity === 0) { return new VerificationResult(false, 0.0, "No self-referential steps detected"); } const ratio = f64(totalTime) / f64(selfreferentialComplexity); const verified = totalTime >= selfreferentialComplexity; return new VerificationResult( verified, ratio, `T(n)=${totalTime}, S(M,x)=${selfreferentialComplexity}, ratio=${toFixed(ratio, 3)}` ); } /** * Get detailed complexity analysis */ public getComplexityAnalysis(): ComplexityAnalysis { const totalSteps = this.steps.length; const selfreferentialCount = this.selfreferentialSteps.length; const ratio = this.getComplexityRatio(); // Calculate step-by-step growth const growthPattern = new Array<i32>(); let cumulativeSelfref = 0; for (let i = 0; i < totalSteps; i++) { if (this.selfreferentialSteps.includes(i)) { cumulativeSelfref++; } growthPattern.push(cumulativeSelfref); } return new ComplexityAnalysis( totalSteps, selfreferentialCount, ratio, growthPattern, this.classifyComplexity(ratio) ); } private classifyComplexity(ratio: f64): string { if (ratio < 0.1) return "LOW"; if (ratio < 0.3) return "MODERATE"; if (ratio < 0.6) return "HIGH"; return "EXTREME"; } } // ============================================================================ // RESULT CLASSES // ============================================================================ export class VerificationResult { public verified: bool; public constant: f64; public details: string; constructor(verified: bool, constant: f64, details: string) { this.verified = verified; this.constant = constant; this.details = details; } } export class ComplexityAnalysis { public totalSteps: i32; public selfreferentialSteps: i32; public ratio: f64; public growthPattern: Array<i32>; public classification: string; constructor( totalSteps: i32, selfreferentialSteps: i32, ratio: f64, growthPattern: Array<i32>, classification: string ) { this.totalSteps = totalSteps; this.selfreferentialSteps = selfreferentialSteps; this.ratio = ratio; this.growthPattern = growthPattern; this.classification = classification; } } // ============================================================================ // HOLOGRAPHIC MEMORY IMPLEMENTATION // ============================================================================ /** * Simplified holographic memory for storing quantum computation states */ class HolographicMemory { private storage: Map<string, ResonantFragment>; private entanglements: Map<string, Array<string>>; constructor() { this.storage = new Map<string, ResonantFragment>(); this.entanglements = new Map<string, Array<string>>(); } /** * Store a quantum fragment with given key */ public store(key: string, fragment: ResonantFragment): void { this.storage.set(key, fragment); // Create entanglements with existing fragments const keys = this.storage.keys(); const entangled = new Array<string>(); for (let i = 0; i < keys.length; i++) { const otherKey = keys[i]; if (otherKey !== key) { const otherFragment = this.storage.get(otherKey)!; const entanglement = tensor(fragment, otherFragment); if (entropy(entanglement) > 0.01) { entangled.push(otherKey); } } } this.entanglements.set(key, entangled); } /** * Retrieve fragment by key */ public retrieve(key: string): ResonantFragment | null { return this.storage.get(key) || null; } /** * Get all fragments entangled with given key */ public getEntangled(key: string): Array<ResonantFragment> { const entangledKeys = this.entanglements.get(key); const fragments = new Array<ResonantFragment>(); if (entangledKeys) { for (let i = 0; i < entangledKeys.length; i++) { const fragment = this.storage.get(entangledKeys[i]); if (fragment) { fragments.push(fragment); } } } return fragments; } /** * Check if accessing key would be self-referential */ public isSelfreferentialAccess(key: string, accessorKey: string): bool { const entangledKeys = this.entanglements.get(accessorKey); if (entangledKeys) { return entangledKeys.includes(key); } return false; } } // ============================================================================ // EXAMPLE DEMONSTRATIONS // ============================================================================ /** * Example 1: Basic Self-Referential Complexity Tracking */ export function demonstrateBasicTracking(): void { console.log("=== Example 1: Basic Self-Referential Complexity ==="); const tracker = new SelfReferentialTracker("SIMPLE_MACHINE"); // Simulate a simple computation const step1 = new ComputationStep(0, "q0", 0, "101", "read_0"); const step2 = new ComputationStep(1, "q1", 1, "101", "read_1"); const step3 = new ComputationStep(2, "q0", 2, "101", "check_q0"); // Self-referential! const step4 = new ComputationStep(3, "q2", 0, "101", "check_tape_101"); // Self-referential! tracker.addStep(step1); tracker.addStep(step2); tracker.addStep(step3); tracker.addStep(step4); const analysis = tracker.getComplexityAnalysis(); console.log(`Total steps: ${analysis.totalSteps}`); console.log(`Self-referential steps: ${analysis.selfreferentialSteps}`); console.log(`Complexity ratio: ${toFixed(analysis.ratio, 3)}`); console.log(`Classification: ${analysis.classification}`); const verification = tracker.verifyFundamentalLemma(100); console.log(`Fundamental lemma verified: ${verification.verified}`); console.log(`Details: ${verification.details}`); } /** * Example 2: Holographic Memory Self-Reference Detection */ export function demonstrateHolographicMemory(): void { console.log("\n=== Example 2: Holographic Memory Self-Reference ==="); const memory = new HolographicMemory(); // Store some quantum states const state1 = ResonantFragment.encode("initial_config"); const state2 = ResonantFragment.encode("intermediate_config"); const state3 = ResonantFragment.encode("initial_config_modified"); // Similar to state1 memory.store("config_0", state1); memory.store("config_1", state2); memory.store("config_2", state3); // Check for self-referential access patterns const isSelfref_2_0 = memory.isSelfreferentialAccess("config_0", "config_2"); const isSelfref_1_0 = memory.isSelfreferentialAccess("config_0", "config_1"); console.log(`config_2 accessing config_0 is self-referential: ${isSelfref_2_0}`); console.log(`config_1 accessing config_0 is self-referential: ${isSelfref_1_0}`); // Show entanglement patterns const entangled = memory.getEntangled("config_0"); console.log(`config_0 is entangled with ${entangled.length} other states`); } /** * Example 3: Complexity Growth Analysis */ export function demonstrateComplexityGrowth(): void { console.log("\n=== Example 3: Complexity Growth Pattern ==="); const tracker = new SelfReferentialTracker("GROWTH_ANALYSIS_MACHINE"); // Simulate increasing self-referential behavior for (let i = 0; i < 10; i++) { const state = i < 3 ? "q0" : "q1"; const transition = i > 2 ? `check_step_${i-3}` : `normal_${i}`; const step = new ComputationStep( i, state, i % 5, `tape_${i}`, transition ); tracker.addStep(step); } const analysis = tracker.getComplexityAnalysis(); console.log("Growth pattern (cumulative self-referential steps):"); for (let i = 0; i < analysis.growthPattern.length; i++) { console.log(`Step ${i}: ${analysis.growthPattern[i]} self-referential steps`); } console.log(`\nFinal complexity ratio: ${toFixed(analysis.ratio, 3)}`); console.log(`Classification: ${analysis.classification}`); } /** * Example 4: Machine Description Access Detection */ export function demonstrateMachineDescriptionAccess(): void { console.log("\n=== Example 4: Machine Description Access ==="); const machineDesc = "TM{states:[q0,q1,q2], alphabet:[0,1], transitions:...}"; const tracker = new SelfReferentialTracker(machineDesc); // Steps that access machine description const step1 = new ComputationStep(0, "q0", 0, "01", "normal"); const step2 = new ComputationStep(1, "q1", 1, "01", "check_states"); // References machine desc const step3 = new ComputationStep(2, "q2", 2, "01", "verify_alphabet"); // References machine desc tracker.addStep(step1); tracker.addStep(step2); tracker.addStep(step3); const analysis = tracker.getComplexityAnalysis(); console.log("Self-referential steps detected:"); console.log(`Total: ${analysis.selfreferentialSteps} out of ${analysis.totalSteps}`); console.log(`Ratio: ${toFixed(analysis.ratio, 3)}`); // This should show high self-referential complexity due to machine description access console.log(`Classification: ${analysis.classification}`); } // ============================================================================ // MAIN EXECUTION // ============================================================================ export function runSelfReferentialComplexityExamples(): void { console.log("🧠 Self-Referential Complexity Implementation"); console.log("Implementing core concepts from P ≠ NP proof by Muñoz de la Cuesta\n"); demonstrateBasicTracking(); demonstrateHolographicMemory(); demonstrateComplexityGrowth(); demonstrateMachineDescriptionAccess(); console.log("\n✅ Self-referential complexity tracking system operational!"); console.log("Ready for SAT solver implementation in Phase 2."); } // Note: Auto-execution removed for AssemblyScript compatibility // Call runSelfReferentialComplexityExamples() manually to execute examples