@sschepis/resolang
Version:
ResoLang - Core quantum resonance computation library for browser and Node.js
514 lines (423 loc) • 15.8 kB
text/typescript
/**
* Self-Referential Complexity Implementation for P ≠ NP Proof
*
* This module implements the core concept from Javier Muñoz de la Cuesta's proof:
* Self-referential complexity S(M,x) = |{t | δ(qt, wt|pt) is self-referential}|
*
* A computational step is self-referential if it accesses:
* - Prior configuration Cs (s < t)
* - Machine description ⟨M⟩
* - Computable functions of these
*/
import {
ResonantFragment,
EntangledNode,
Prime
} from '../resolang';
import {
tensor,
collapse,
entropy
} from '../operators';
import { toFixed } from '../utils';
// ============================================================================
// CORE DATA STRUCTURES
// ============================================================================
/**
* Represents a single computational step in a Turing machine
*/
export class ComputationStep {
public stepNumber: i32;
public state: string;
public tapePosition: i32;
public tapeContent: string;
public transition: string;
public timestamp: i64;
public godelNumber: u64;
constructor(
stepNumber: i32,
state: string,
tapePosition: i32,
tapeContent: string,
transition: string
) {
this.stepNumber = stepNumber;
this.state = state;
this.tapePosition = tapePosition;
this.tapeContent = tapeContent;
this.transition = transition;
this.timestamp = Date.now();
this.godelNumber = this.calculateGodelNumber();
}
/**
* Calculate Gödel number for this configuration
* Uses prime encoding: state × tape × position
*/
private calculateGodelNumber(): u64 {
const stateHash = this.hashString(this.state);
const tapeHash = this.hashString(this.tapeContent);
const positionPrime = this.getPrime(this.tapePosition + 1);
return stateHash * tapeHash * positionPrime;
}
private hashString(str: string): u64 {
let hash: u64 = 5381;
for (let i = 0; i < str.length; i++) {
hash = ((hash << 5) + hash) + str.charCodeAt(i);
}
return hash;
}
private getPrime(n: i32): u64 {
const primes: u64[] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47];
return primes[n % primes.length];
}
/**
* Check if this step references a prior configuration
*/
public referencesConfiguration(otherStep: ComputationStep): bool {
// Check for state reference
if (this.transition.includes(otherStep.state)) {
return true;
}
// Check for tape content reference
if (this.tapeContent.includes(otherStep.tapeContent.substr(0, 3))) {
return true;
}
// Check for position reference
if (this.tapePosition === otherStep.tapePosition) {
return true;
}
return false;
}
}
/**
* Tracks self-referential complexity during algorithm execution
*/
export class SelfReferentialTracker {
private steps: Array<ComputationStep>;
private selfreferentialSteps: Array<i32>;
private holographicMemory: HolographicMemory;
private machineDescription: ResonantFragment;
constructor(machineDescription: string) {
this.steps = new Array<ComputationStep>();
this.selfreferentialSteps = new Array<i32>();
this.holographicMemory = new HolographicMemory();
this.machineDescription = ResonantFragment.encode(machineDescription);
}
/**
* Add a new computation step and check for self-referential properties
*/
public addStep(step: ComputationStep): void {
this.steps.push(step);
// Store step in holographic memory for quantum access
const stepFragment = this.encodeStep(step);
this.holographicMemory.store(`step_${step.stepNumber}`, stepFragment);
// Check if this step is self-referential
if (this.isSelfreferentialStep(step)) {
this.selfreferentialSteps.push(step.stepNumber);
}
}
/**
* Core implementation of self-referential detection
* A step is self-referential if it accesses prior configurations or machine description
*/
private isSelfreferentialStep(currentStep: ComputationStep): bool {
const currentFragment = this.encodeStep(currentStep);
// Check access to machine description
const machineAccess = tensor(currentFragment, this.machineDescription);
if (entropy(machineAccess) > 0.1) {
return true;
}
// Check access to prior configurations
for (let i = 0; i < this.steps.length - 1; i++) {
const priorStep = this.steps[i];
// Direct reference check
if (currentStep.referencesConfiguration(priorStep)) {
return true;
}
// Quantum entanglement check
const priorFragment = this.encodeStep(priorStep);
const entanglement = tensor(currentFragment, priorFragment);
if (entropy(entanglement) > 0.05) {
return true;
}
}
return false;
}
/**
* Encode computation step as quantum fragment
*/
private encodeStep(step: ComputationStep): ResonantFragment {
const configString = `${step.state}_${step.tapeContent}_${step.tapePosition}`;
return ResonantFragment.encode(configString);
}
/**
* Calculate total self-referential complexity S(M,x)
*/
public getSelfreferentialComplexity(): i32 {
return this.selfreferentialSteps.length;
}
/**
* Get ratio of self-referential steps to total steps
*/
public getComplexityRatio(): f64 {
if (this.steps.length === 0) return 0.0;
return f64(this.selfreferentialSteps.length) / f64(this.steps.length);
}
/**
* Verify the fundamental lemma: T(n) ≥ c · S(M,x)
*/
public verifyFundamentalLemma(totalTime: i32): VerificationResult {
const selfreferentialComplexity = this.getSelfreferentialComplexity();
if (selfreferentialComplexity === 0) {
return new VerificationResult(false, 0.0, "No self-referential steps detected");
}
const ratio = f64(totalTime) / f64(selfreferentialComplexity);
const verified = totalTime >= selfreferentialComplexity;
return new VerificationResult(
verified,
ratio,
`T(n)=${totalTime}, S(M,x)=${selfreferentialComplexity}, ratio=${toFixed(ratio, 3)}`
);
}
/**
* Get detailed complexity analysis
*/
public getComplexityAnalysis(): ComplexityAnalysis {
const totalSteps = this.steps.length;
const selfreferentialCount = this.selfreferentialSteps.length;
const ratio = this.getComplexityRatio();
// Calculate step-by-step growth
const growthPattern = new Array<i32>();
let cumulativeSelfref = 0;
for (let i = 0; i < totalSteps; i++) {
if (this.selfreferentialSteps.includes(i)) {
cumulativeSelfref++;
}
growthPattern.push(cumulativeSelfref);
}
return new ComplexityAnalysis(
totalSteps,
selfreferentialCount,
ratio,
growthPattern,
this.classifyComplexity(ratio)
);
}
private classifyComplexity(ratio: f64): string {
if (ratio < 0.1) return "LOW";
if (ratio < 0.3) return "MODERATE";
if (ratio < 0.6) return "HIGH";
return "EXTREME";
}
}
// ============================================================================
// RESULT CLASSES
// ============================================================================
export class VerificationResult {
public verified: bool;
public constant: f64;
public details: string;
constructor(verified: bool, constant: f64, details: string) {
this.verified = verified;
this.constant = constant;
this.details = details;
}
}
export class ComplexityAnalysis {
public totalSteps: i32;
public selfreferentialSteps: i32;
public ratio: f64;
public growthPattern: Array<i32>;
public classification: string;
constructor(
totalSteps: i32,
selfreferentialSteps: i32,
ratio: f64,
growthPattern: Array<i32>,
classification: string
) {
this.totalSteps = totalSteps;
this.selfreferentialSteps = selfreferentialSteps;
this.ratio = ratio;
this.growthPattern = growthPattern;
this.classification = classification;
}
}
// ============================================================================
// HOLOGRAPHIC MEMORY IMPLEMENTATION
// ============================================================================
/**
* Simplified holographic memory for storing quantum computation states
*/
class HolographicMemory {
private storage: Map<string, ResonantFragment>;
private entanglements: Map<string, Array<string>>;
constructor() {
this.storage = new Map<string, ResonantFragment>();
this.entanglements = new Map<string, Array<string>>();
}
/**
* Store a quantum fragment with given key
*/
public store(key: string, fragment: ResonantFragment): void {
this.storage.set(key, fragment);
// Create entanglements with existing fragments
const keys = this.storage.keys();
const entangled = new Array<string>();
for (let i = 0; i < keys.length; i++) {
const otherKey = keys[i];
if (otherKey !== key) {
const otherFragment = this.storage.get(otherKey)!;
const entanglement = tensor(fragment, otherFragment);
if (entropy(entanglement) > 0.01) {
entangled.push(otherKey);
}
}
}
this.entanglements.set(key, entangled);
}
/**
* Retrieve fragment by key
*/
public retrieve(key: string): ResonantFragment | null {
return this.storage.get(key) || null;
}
/**
* Get all fragments entangled with given key
*/
public getEntangled(key: string): Array<ResonantFragment> {
const entangledKeys = this.entanglements.get(key);
const fragments = new Array<ResonantFragment>();
if (entangledKeys) {
for (let i = 0; i < entangledKeys.length; i++) {
const fragment = this.storage.get(entangledKeys[i]);
if (fragment) {
fragments.push(fragment);
}
}
}
return fragments;
}
/**
* Check if accessing key would be self-referential
*/
public isSelfreferentialAccess(key: string, accessorKey: string): bool {
const entangledKeys = this.entanglements.get(accessorKey);
if (entangledKeys) {
return entangledKeys.includes(key);
}
return false;
}
}
// ============================================================================
// EXAMPLE DEMONSTRATIONS
// ============================================================================
/**
* Example 1: Basic Self-Referential Complexity Tracking
*/
export function demonstrateBasicTracking(): void {
console.log("=== Example 1: Basic Self-Referential Complexity ===");
const tracker = new SelfReferentialTracker("SIMPLE_MACHINE");
// Simulate a simple computation
const step1 = new ComputationStep(0, "q0", 0, "101", "read_0");
const step2 = new ComputationStep(1, "q1", 1, "101", "read_1");
const step3 = new ComputationStep(2, "q0", 2, "101", "check_q0"); // Self-referential!
const step4 = new ComputationStep(3, "q2", 0, "101", "check_tape_101"); // Self-referential!
tracker.addStep(step1);
tracker.addStep(step2);
tracker.addStep(step3);
tracker.addStep(step4);
const analysis = tracker.getComplexityAnalysis();
console.log(`Total steps: ${analysis.totalSteps}`);
console.log(`Self-referential steps: ${analysis.selfreferentialSteps}`);
console.log(`Complexity ratio: ${toFixed(analysis.ratio, 3)}`);
console.log(`Classification: ${analysis.classification}`);
const verification = tracker.verifyFundamentalLemma(100);
console.log(`Fundamental lemma verified: ${verification.verified}`);
console.log(`Details: ${verification.details}`);
}
/**
* Example 2: Holographic Memory Self-Reference Detection
*/
export function demonstrateHolographicMemory(): void {
console.log("\n=== Example 2: Holographic Memory Self-Reference ===");
const memory = new HolographicMemory();
// Store some quantum states
const state1 = ResonantFragment.encode("initial_config");
const state2 = ResonantFragment.encode("intermediate_config");
const state3 = ResonantFragment.encode("initial_config_modified"); // Similar to state1
memory.store("config_0", state1);
memory.store("config_1", state2);
memory.store("config_2", state3);
// Check for self-referential access patterns
const isSelfref_2_0 = memory.isSelfreferentialAccess("config_0", "config_2");
const isSelfref_1_0 = memory.isSelfreferentialAccess("config_0", "config_1");
console.log(`config_2 accessing config_0 is self-referential: ${isSelfref_2_0}`);
console.log(`config_1 accessing config_0 is self-referential: ${isSelfref_1_0}`);
// Show entanglement patterns
const entangled = memory.getEntangled("config_0");
console.log(`config_0 is entangled with ${entangled.length} other states`);
}
/**
* Example 3: Complexity Growth Analysis
*/
export function demonstrateComplexityGrowth(): void {
console.log("\n=== Example 3: Complexity Growth Pattern ===");
const tracker = new SelfReferentialTracker("GROWTH_ANALYSIS_MACHINE");
// Simulate increasing self-referential behavior
for (let i = 0; i < 10; i++) {
const state = i < 3 ? "q0" : "q1";
const transition = i > 2 ? `check_step_${i-3}` : `normal_${i}`;
const step = new ComputationStep(
i,
state,
i % 5,
`tape_${i}`,
transition
);
tracker.addStep(step);
}
const analysis = tracker.getComplexityAnalysis();
console.log("Growth pattern (cumulative self-referential steps):");
for (let i = 0; i < analysis.growthPattern.length; i++) {
console.log(`Step ${i}: ${analysis.growthPattern[i]} self-referential steps`);
}
console.log(`\nFinal complexity ratio: ${toFixed(analysis.ratio, 3)}`);
console.log(`Classification: ${analysis.classification}`);
}
/**
* Example 4: Machine Description Access Detection
*/
export function demonstrateMachineDescriptionAccess(): void {
console.log("\n=== Example 4: Machine Description Access ===");
const machineDesc = "TM{states:[q0,q1,q2], alphabet:[0,1], transitions:...}";
const tracker = new SelfReferentialTracker(machineDesc);
// Steps that access machine description
const step1 = new ComputationStep(0, "q0", 0, "01", "normal");
const step2 = new ComputationStep(1, "q1", 1, "01", "check_states"); // References machine desc
const step3 = new ComputationStep(2, "q2", 2, "01", "verify_alphabet"); // References machine desc
tracker.addStep(step1);
tracker.addStep(step2);
tracker.addStep(step3);
const analysis = tracker.getComplexityAnalysis();
console.log("Self-referential steps detected:");
console.log(`Total: ${analysis.selfreferentialSteps} out of ${analysis.totalSteps}`);
console.log(`Ratio: ${toFixed(analysis.ratio, 3)}`);
// This should show high self-referential complexity due to machine description access
console.log(`Classification: ${analysis.classification}`);
}
// ============================================================================
// MAIN EXECUTION
// ============================================================================
export function runSelfReferentialComplexityExamples(): void {
console.log("🧠 Self-Referential Complexity Implementation");
console.log("Implementing core concepts from P ≠ NP proof by Muñoz de la Cuesta\n");
demonstrateBasicTracking();
demonstrateHolographicMemory();
demonstrateComplexityGrowth();
demonstrateMachineDescriptionAccess();
console.log("\n✅ Self-referential complexity tracking system operational!");
console.log("Ready for SAT solver implementation in Phase 2.");
}
// Note: Auto-execution removed for AssemblyScript compatibility
// Call runSelfReferentialComplexityExamples() manually to execute examples