@sschepis/resolang
Version:
ResoLang - Core quantum resonance computation library
286 lines (243 loc) • 8.29 kB
text/typescript
// assembly/runtime/state/primeState.ts
import { Complex } from "../../types";
/**
* Represents the state of a quantum number, which is a superposition of prime states.
* |n> = Σᵢ√(aᵢ/A)|pᵢ>
*/
export interface IQuantumNumberState {
number: i32;
primeAmplitudes: Map<i32, Complex>; // Map of prime -> amplitude
totalAmplitude: f64;
getProbability(prime: i32): f64;
normalize(): void;
}
/**
* Defines the types of bases available for transformation.
*/
export enum BasisType {
PRIME,
FOURIER,
WAVELET,
POLYNOMIAL,
MODULAR
}
/**
* A placeholder interface for the prime state.
*/
export interface IPrimeState {
// This would contain properties related to the prime state.
}
export class OscillatorState {
constructor(public amplitude: f64, public phase: f64) {}
}
/**
* The prime state engine, extended with quantum-like features,
* including multi-basis representations and resonance operators.
*/
export interface IPrimeStateEngine {
/**
* Creates a quantum number state from a given integer 'n'.
* @param n The integer to represent as a quantum state.
* @returns An IQuantumNumberState object.
*/
createNumberState(n: i32): IQuantumNumberState;
/**
* Applies a resonance operator to a prime state.
* R(n)|p> = e^(2πi log_p(n))|p>
* @param n The number defining the resonance.
* @param prime The prime to apply the operator to.
* @returns The resulting complex number.
*/
applyResonanceOperator(n: i32, prime: i32): Complex;
/**
* Transforms the current prime state to a different basis.
* @param basis The target basis to transform to.
* @returns A new IPrimeState in the target basis.
*/
transformToBasis(basis: BasisType): IPrimeState;
/**
* Computes the coherence between two primes in the state.
* C(p₁,p₂) = cos(φ[p₁] - φ[p₂]) × ψ[p₁] × ψ[p₂]
* @param p1 The first prime.
* @param p2 The second prime.
* @returns The coherence value.
*/
computePairwiseCoherence(p1: i32, p2: i32): f64;
/**
* Gets the state of a single prime oscillator.
*/
getOscillator(prime: i32): OscillatorState;
/**
* Gets a list of all active primes.
*/
getActivePrimes(): i32[];
/**
* Gets a map of all oscillators.
*/
getAllOscillators(): Map<i32, OscillatorState>;
/**
* Resets the prime state.
*/
reset(): void;
/**
* Sets the amplitude of a prime.
*/
setAmplitude(prime: i32, amplitude: f64): void;
/**
* Normalizes the prime state.
*/
normalize(): void;
/**
* Gets the amplitude of a prime.
*/
getAmplitude(prime: i32): f64;
/**
* Gets the phase of a prime.
*/
getPhase(prime: i32): f64;
/**
* Sets the phase of a prime.
*/
setPhase(prime: i32, phase: f64): void;
/**
* Entangles two primes.
*/
entangle(prime1: i32, prime2: i32): void;
}
export class PrimeStateEngine implements IPrimeStateEngine {
private primeAmplitudes: Map<i32, Complex> = new Map();
private phases: Map<i32, f64> = new Map();
createNumberState(n: i32): IQuantumNumberState {
// This is a simplified factorization for demonstration.
// A real implementation would use a more sophisticated algorithm.
const factors = new Map<i32, i32>();
let num = n;
let i = 2;
while (i * i <= num) {
if (num % i === 0) {
factors.set(i, (factors.get(i) || 0) + 1);
num /= i;
} else {
i++;
}
}
if (num > 1) {
factors.set(num, (factors.get(num) || 0) + 1);
}
const primeAmplitudes = new Map<i32, Complex>();
let totalAmplitude: f64 = 0;
const keys = factors.keys();
for(let i = 0; i < keys.length; i++) {
const prime = keys[i];
const power = factors.get(prime);
const amplitude = Math.sqrt(power as f64);
primeAmplitudes.set(prime, new Complex(amplitude, 0));
totalAmplitude += power as f64;
}
return new QuantumNumberState(n, primeAmplitudes, totalAmplitude);
}
applyResonanceOperator(n: i32, prime: i32): Complex {
// R(n)|p> = e^(2πi log_p(n))|p>
const log_p_n = Math.log(n as f64) / Math.log(prime as f64);
const exponent = new Complex(0, 2 * Math.PI * log_p_n);
return exponent.exp();
}
transformToBasis(basis: BasisType): IPrimeState {
// Placeholder for basis transformation logic.
// console.log(`Transforming to ${basis} basis...`);
return {};
}
computePairwiseCoherence(p1: i32, p2: i32): f64 {
const phase1 = this.phases.get(p1) || 0;
const phase2 = this.phases.get(p2) || 0;
const amp1 = this.primeAmplitudes.has(p1) ? this.primeAmplitudes.get(p1).abs() : 0;
const amp2 = this.primeAmplitudes.has(p2) ? this.primeAmplitudes.get(p2).abs() : 0;
return Math.cos(phase1 - phase2) * amp1 * amp2;
}
getOscillator(prime: i32): OscillatorState {
const amp = this.primeAmplitudes.has(prime) ? this.primeAmplitudes.get(prime).abs() : 0;
const phase = this.phases.get(prime) || 0;
return new OscillatorState(amp, phase);
}
getActivePrimes(): i32[] {
return this.primeAmplitudes.keys();
}
getAllOscillators(): Map<i32, OscillatorState> {
const oscillators = new Map<i32, OscillatorState>();
const keys = this.primeAmplitudes.keys();
for (let i = 0; i < keys.length; i++) {
const prime = keys[i];
oscillators.set(prime, this.getOscillator(prime));
}
return oscillators;
}
reset(): void {
this.primeAmplitudes.clear();
this.phases.clear();
}
setAmplitude(prime: i32, amplitude: f64): void {
// This is a simplified implementation. A real implementation would
// also need to handle the phase component of the complex number.
this.primeAmplitudes.set(prime, new Complex(amplitude, 0));
}
normalize(): void {
let sumOfSquares: f64 = 0;
const values = this.primeAmplitudes.values();
for (let i = 0; i < values.length; i++) {
sumOfSquares += Math.pow(values[i].abs(), 2);
}
const norm = Math.sqrt(sumOfSquares);
if (norm === 0) return;
const keys = this.primeAmplitudes.keys();
for (let i = 0; i < keys.length; i++) {
const prime = keys[i];
const amp = this.primeAmplitudes.get(prime);
this.primeAmplitudes.set(prime, amp.div(new Complex(norm, 0)));
}
}
getAmplitude(prime: i32): f64 {
if (this.primeAmplitudes.has(prime)) {
return this.primeAmplitudes.get(prime).abs();
}
return 0;
}
getPhase(prime: i32): f64 {
return this.phases.get(prime) || 0;
}
setPhase(prime: i32, phase: f64): void {
this.phases.set(prime, phase);
}
entangle(prime1: i32, prime2: i32): void {
// Simplified entanglement: copy phase from prime1 to prime2
const phase1 = this.getPhase(prime1);
this.setPhase(prime2, phase1);
}
}
class QuantumNumberState implements IQuantumNumberState {
constructor(
public number: i32,
public primeAmplitudes: Map<i32, Complex>,
public totalAmplitude: f64
) {}
getProbability(prime: i32): f64 {
if (!this.primeAmplitudes.has(prime)) return 0;
const amplitude = this.primeAmplitudes.get(prime);
return Math.pow(amplitude.abs(), 2) / this.totalAmplitude;
}
normalize(): void {
let sumOfSquares: f64 = 0;
const values = this.primeAmplitudes.values();
for (let i = 0; i < values.length; i++) {
sumOfSquares += Math.pow(values[i].abs(), 2);
}
const norm = Math.sqrt(sumOfSquares);
if (norm === 0) return;
const keys = this.primeAmplitudes.keys();
for (let i = 0; i < keys.length; i++) {
const prime = keys[i];
const amp = this.primeAmplitudes.get(prime);
this.primeAmplitudes.set(prime, amp.div(new Complex(norm, 0)));
}
this.totalAmplitude = 1;
}
}