UNPKG

@sschepis/resolang

Version:

ResoLang - Core quantum resonance computation library

286 lines (243 loc) 8.29 kB
// assembly/runtime/state/primeState.ts import { Complex } from "../../types"; /** * Represents the state of a quantum number, which is a superposition of prime states. * |n> = Σᵢ√(aᵢ/A)|pᵢ> */ export interface IQuantumNumberState { number: i32; primeAmplitudes: Map<i32, Complex>; // Map of prime -> amplitude totalAmplitude: f64; getProbability(prime: i32): f64; normalize(): void; } /** * Defines the types of bases available for transformation. */ export enum BasisType { PRIME, FOURIER, WAVELET, POLYNOMIAL, MODULAR } /** * A placeholder interface for the prime state. */ export interface IPrimeState { // This would contain properties related to the prime state. } export class OscillatorState { constructor(public amplitude: f64, public phase: f64) {} } /** * The prime state engine, extended with quantum-like features, * including multi-basis representations and resonance operators. */ export interface IPrimeStateEngine { /** * Creates a quantum number state from a given integer 'n'. * @param n The integer to represent as a quantum state. * @returns An IQuantumNumberState object. */ createNumberState(n: i32): IQuantumNumberState; /** * Applies a resonance operator to a prime state. * R(n)|p> = e^(2πi log_p(n))|p> * @param n The number defining the resonance. * @param prime The prime to apply the operator to. * @returns The resulting complex number. */ applyResonanceOperator(n: i32, prime: i32): Complex; /** * Transforms the current prime state to a different basis. * @param basis The target basis to transform to. * @returns A new IPrimeState in the target basis. */ transformToBasis(basis: BasisType): IPrimeState; /** * Computes the coherence between two primes in the state. * C(p₁,p₂) = cos(φ[p₁] - φ[p₂]) × ψ[p₁] × ψ[p₂] * @param p1 The first prime. * @param p2 The second prime. * @returns The coherence value. */ computePairwiseCoherence(p1: i32, p2: i32): f64; /** * Gets the state of a single prime oscillator. */ getOscillator(prime: i32): OscillatorState; /** * Gets a list of all active primes. */ getActivePrimes(): i32[]; /** * Gets a map of all oscillators. */ getAllOscillators(): Map<i32, OscillatorState>; /** * Resets the prime state. */ reset(): void; /** * Sets the amplitude of a prime. */ setAmplitude(prime: i32, amplitude: f64): void; /** * Normalizes the prime state. */ normalize(): void; /** * Gets the amplitude of a prime. */ getAmplitude(prime: i32): f64; /** * Gets the phase of a prime. */ getPhase(prime: i32): f64; /** * Sets the phase of a prime. */ setPhase(prime: i32, phase: f64): void; /** * Entangles two primes. */ entangle(prime1: i32, prime2: i32): void; } export class PrimeStateEngine implements IPrimeStateEngine { private primeAmplitudes: Map<i32, Complex> = new Map(); private phases: Map<i32, f64> = new Map(); createNumberState(n: i32): IQuantumNumberState { // This is a simplified factorization for demonstration. // A real implementation would use a more sophisticated algorithm. const factors = new Map<i32, i32>(); let num = n; let i = 2; while (i * i <= num) { if (num % i === 0) { factors.set(i, (factors.get(i) || 0) + 1); num /= i; } else { i++; } } if (num > 1) { factors.set(num, (factors.get(num) || 0) + 1); } const primeAmplitudes = new Map<i32, Complex>(); let totalAmplitude: f64 = 0; const keys = factors.keys(); for(let i = 0; i < keys.length; i++) { const prime = keys[i]; const power = factors.get(prime); const amplitude = Math.sqrt(power as f64); primeAmplitudes.set(prime, new Complex(amplitude, 0)); totalAmplitude += power as f64; } return new QuantumNumberState(n, primeAmplitudes, totalAmplitude); } applyResonanceOperator(n: i32, prime: i32): Complex { // R(n)|p> = e^(2πi log_p(n))|p> const log_p_n = Math.log(n as f64) / Math.log(prime as f64); const exponent = new Complex(0, 2 * Math.PI * log_p_n); return exponent.exp(); } transformToBasis(basis: BasisType): IPrimeState { // Placeholder for basis transformation logic. // console.log(`Transforming to ${basis} basis...`); return {}; } computePairwiseCoherence(p1: i32, p2: i32): f64 { const phase1 = this.phases.get(p1) || 0; const phase2 = this.phases.get(p2) || 0; const amp1 = this.primeAmplitudes.has(p1) ? this.primeAmplitudes.get(p1).abs() : 0; const amp2 = this.primeAmplitudes.has(p2) ? this.primeAmplitudes.get(p2).abs() : 0; return Math.cos(phase1 - phase2) * amp1 * amp2; } getOscillator(prime: i32): OscillatorState { const amp = this.primeAmplitudes.has(prime) ? this.primeAmplitudes.get(prime).abs() : 0; const phase = this.phases.get(prime) || 0; return new OscillatorState(amp, phase); } getActivePrimes(): i32[] { return this.primeAmplitudes.keys(); } getAllOscillators(): Map<i32, OscillatorState> { const oscillators = new Map<i32, OscillatorState>(); const keys = this.primeAmplitudes.keys(); for (let i = 0; i < keys.length; i++) { const prime = keys[i]; oscillators.set(prime, this.getOscillator(prime)); } return oscillators; } reset(): void { this.primeAmplitudes.clear(); this.phases.clear(); } setAmplitude(prime: i32, amplitude: f64): void { // This is a simplified implementation. A real implementation would // also need to handle the phase component of the complex number. this.primeAmplitudes.set(prime, new Complex(amplitude, 0)); } normalize(): void { let sumOfSquares: f64 = 0; const values = this.primeAmplitudes.values(); for (let i = 0; i < values.length; i++) { sumOfSquares += Math.pow(values[i].abs(), 2); } const norm = Math.sqrt(sumOfSquares); if (norm === 0) return; const keys = this.primeAmplitudes.keys(); for (let i = 0; i < keys.length; i++) { const prime = keys[i]; const amp = this.primeAmplitudes.get(prime); this.primeAmplitudes.set(prime, amp.div(new Complex(norm, 0))); } } getAmplitude(prime: i32): f64 { if (this.primeAmplitudes.has(prime)) { return this.primeAmplitudes.get(prime).abs(); } return 0; } getPhase(prime: i32): f64 { return this.phases.get(prime) || 0; } setPhase(prime: i32, phase: f64): void { this.phases.set(prime, phase); } entangle(prime1: i32, prime2: i32): void { // Simplified entanglement: copy phase from prime1 to prime2 const phase1 = this.getPhase(prime1); this.setPhase(prime2, phase1); } } class QuantumNumberState implements IQuantumNumberState { constructor( public number: i32, public primeAmplitudes: Map<i32, Complex>, public totalAmplitude: f64 ) {} getProbability(prime: i32): f64 { if (!this.primeAmplitudes.has(prime)) return 0; const amplitude = this.primeAmplitudes.get(prime); return Math.pow(amplitude.abs(), 2) / this.totalAmplitude; } normalize(): void { let sumOfSquares: f64 = 0; const values = this.primeAmplitudes.values(); for (let i = 0; i < values.length; i++) { sumOfSquares += Math.pow(values[i].abs(), 2); } const norm = Math.sqrt(sumOfSquares); if (norm === 0) return; const keys = this.primeAmplitudes.keys(); for (let i = 0; i < keys.length; i++) { const prime = keys[i]; const amp = this.primeAmplitudes.get(prime); this.primeAmplitudes.set(prime, amp.div(new Complex(norm, 0))); } this.totalAmplitude = 1; } }