@sschepis/resolang
Version:
ResoLang - Core quantum resonance computation library
148 lines (133 loc) • 5.41 kB
text/typescript
// prime-memory.ts
// Implements a conceptual "Prime Memory" system based on Quantum Prime States.
import { Prime, Amplitude } from "../types";
import { PrimeState } from "./prime-state";
/**
* A conceptual Prime Memory system that stores and retrieves information
* as patterns within quantum prime states. This is based on the idea
* that information can be "encoded" into the specific amplitude and
* phase relationships of prime numbers within a quantum state.
*
* This is a highly simplified and theoretical model intended to
* demonstrate the principles, not a functional digital memory system.
*/
export class PrimeMemory {
// A mapping from a string key (representing a "memory address" or "concept")
// to a PrimeState holding the encoded information.
private memoryBank: Map<string, PrimeState>;
constructor() {
this.memoryBank = new Map<string, PrimeState>();
}
/**
* Stores a given PrimeState associated with a string key.
* Conceptually, this "writes" a quantum information pattern to memory.
* @param key The string key to store the memory under.
* @param state The PrimeState to store.
*/
store(key: string, state: PrimeState): void {
// Store a clone to prevent external modification
this.memoryBank.set(key, state.clone());
}
/**
* Retrieves a PrimeState from memory based on a key and a conceptual
* "coherence threshold." The retrieval process here is highly simplified.
* In a real PRN, this would involve a complex "measurement" or "resonance"
* process.
*
* @param key The string key to retrieve the memory.
* @param n A conceptual "focus number" or "context" which might influence retrieval.
* @param coherenceThreshold A conceptual threshold for retrieval fidelity.
* @returns The retrieved PrimeState, or null if not found or coherence is too low.
*/
retrieve(key: string, n: u32, coherenceThreshold: f64 = 0.5): PrimeState | null {
if (this.memoryBank.has(key)) {
const storedState = this.memoryBank.get(key);
// Simulate retrieval fidelity based on coherence and context 'n'
// This is a placeholder for a complex PRN retrieval algorithm.
const currentCoherence = storedState.calculateCoherence();
if (currentCoherence >= coherenceThreshold) {
// Apply some conceptual influence from 'n' (e.g., subtle phase shift)
// For now, return a clone, possibly with a slight modification.
const retrievedState = storedState.clone();
// retrievedState.globalPhase += Math.log(f64(n)); // Example: influence by n
return retrievedState;
}
}
return null;
}
/**
* Lists all currently stored memory keys.
* @returns An array of string keys.
*/
listKeys(): Array<string> {
return this.memoryBank.keys();
}
/**
* Clears all stored memories.
*/
clear(): void {
this.memoryBank.clear();
}
}
// Function that might be part of this file or related memory systems
/**
* Calculates the "prime spectrum" of a given PrimeState.
* This represents the distribution of amplitudes across primes.
*/
export function primeSpectrum(state: PrimeState): Map<Prime, f64> {
const spectrum = new Map<Prime, f64>();
const keys = state.amplitudes.keys();
for (let i = 0; i < keys.length; i++) {
const prime = keys[i];
spectrum.set(prime, state.amplitudes.get(prime));
}
return spectrum;
}
/**
* Conceptually performs a "symbolic collapse" on a given quantum state.
* This function attempts to collapse a multi-prime state into a single
* prime or a small set of resonant primes, based on a "symbolic resonance"
* with a target number n.
*
* This is a highly theoretical operation in the Prime Resonance Formalism,
* implying a directed measurement or a resonant interaction that forces
* the quantum state towards a specific prime-based configuration.
*
* @param state The input PrimeState to collapse.
* @param n The target number for symbolic resonance.
* @param resonanceFactor A factor influencing the strength of the collapse.
* @returns A new PrimeState representing the collapsed state.
*/
export function symbolicCollapse(
state: PrimeState,
n: u32,
resonanceFactor: f64 = 1.0
): PrimeState {
if (state.primes.length === 0) return state.clone();
const primaryPrime = state.measure(); // Get the most probable prime
// In a more advanced model, this would involve prime factors of n,
// and selective amplification of resonant paths.
const newAmplitudes = new Map<Prime, Amplitude>();
newAmplitudes.set(primaryPrime, 1.0); // Collapse to primary prime
// Add a small influence from n's prime factors (simplified)
let tempNum = n;
let p: u32 = 2;
while (p * p <= tempNum) {
if (tempNum % p == 0) {
// If p is a factor of n, enhance its amplitude slightly
const currentAmp = newAmplitudes.has(p) ? newAmplitudes.get(p) : 0.0;
newAmplitudes.set(p, currentAmp + 0.1 * resonanceFactor);
}
while (tempNum % p == 0) {
tempNum /= p;
}
p++;
}
if (tempNum > 1) {
const currentAmp = newAmplitudes.has(tempNum) ? newAmplitudes.get(tempNum) : 0.0;
newAmplitudes.set(tempNum, currentAmp + 0.1 * resonanceFactor);
}
const collapsedState = PrimeState.fromAmplitudes(newAmplitudes);
collapsedState.normalize(); // Ensure it's a valid quantum state
return collapsedState;
}