UNPKG

@sschepis/resolang

Version:

ResoLang - Core quantum resonance computation library

148 lines (133 loc) 5.41 kB
// prime-memory.ts // Implements a conceptual "Prime Memory" system based on Quantum Prime States. import { Prime, Amplitude } from "../types"; import { PrimeState } from "./prime-state"; /** * A conceptual Prime Memory system that stores and retrieves information * as patterns within quantum prime states. This is based on the idea * that information can be "encoded" into the specific amplitude and * phase relationships of prime numbers within a quantum state. * * This is a highly simplified and theoretical model intended to * demonstrate the principles, not a functional digital memory system. */ export class PrimeMemory { // A mapping from a string key (representing a "memory address" or "concept") // to a PrimeState holding the encoded information. private memoryBank: Map<string, PrimeState>; constructor() { this.memoryBank = new Map<string, PrimeState>(); } /** * Stores a given PrimeState associated with a string key. * Conceptually, this "writes" a quantum information pattern to memory. * @param key The string key to store the memory under. * @param state The PrimeState to store. */ store(key: string, state: PrimeState): void { // Store a clone to prevent external modification this.memoryBank.set(key, state.clone()); } /** * Retrieves a PrimeState from memory based on a key and a conceptual * "coherence threshold." The retrieval process here is highly simplified. * In a real PRN, this would involve a complex "measurement" or "resonance" * process. * * @param key The string key to retrieve the memory. * @param n A conceptual "focus number" or "context" which might influence retrieval. * @param coherenceThreshold A conceptual threshold for retrieval fidelity. * @returns The retrieved PrimeState, or null if not found or coherence is too low. */ retrieve(key: string, n: u32, coherenceThreshold: f64 = 0.5): PrimeState | null { if (this.memoryBank.has(key)) { const storedState = this.memoryBank.get(key); // Simulate retrieval fidelity based on coherence and context 'n' // This is a placeholder for a complex PRN retrieval algorithm. const currentCoherence = storedState.calculateCoherence(); if (currentCoherence >= coherenceThreshold) { // Apply some conceptual influence from 'n' (e.g., subtle phase shift) // For now, return a clone, possibly with a slight modification. const retrievedState = storedState.clone(); // retrievedState.globalPhase += Math.log(f64(n)); // Example: influence by n return retrievedState; } } return null; } /** * Lists all currently stored memory keys. * @returns An array of string keys. */ listKeys(): Array<string> { return this.memoryBank.keys(); } /** * Clears all stored memories. */ clear(): void { this.memoryBank.clear(); } } // Function that might be part of this file or related memory systems /** * Calculates the "prime spectrum" of a given PrimeState. * This represents the distribution of amplitudes across primes. */ export function primeSpectrum(state: PrimeState): Map<Prime, f64> { const spectrum = new Map<Prime, f64>(); const keys = state.amplitudes.keys(); for (let i = 0; i < keys.length; i++) { const prime = keys[i]; spectrum.set(prime, state.amplitudes.get(prime)); } return spectrum; } /** * Conceptually performs a "symbolic collapse" on a given quantum state. * This function attempts to collapse a multi-prime state into a single * prime or a small set of resonant primes, based on a "symbolic resonance" * with a target number n. * * This is a highly theoretical operation in the Prime Resonance Formalism, * implying a directed measurement or a resonant interaction that forces * the quantum state towards a specific prime-based configuration. * * @param state The input PrimeState to collapse. * @param n The target number for symbolic resonance. * @param resonanceFactor A factor influencing the strength of the collapse. * @returns A new PrimeState representing the collapsed state. */ export function symbolicCollapse( state: PrimeState, n: u32, resonanceFactor: f64 = 1.0 ): PrimeState { if (state.primes.length === 0) return state.clone(); const primaryPrime = state.measure(); // Get the most probable prime // In a more advanced model, this would involve prime factors of n, // and selective amplification of resonant paths. const newAmplitudes = new Map<Prime, Amplitude>(); newAmplitudes.set(primaryPrime, 1.0); // Collapse to primary prime // Add a small influence from n's prime factors (simplified) let tempNum = n; let p: u32 = 2; while (p * p <= tempNum) { if (tempNum % p == 0) { // If p is a factor of n, enhance its amplitude slightly const currentAmp = newAmplitudes.has(p) ? newAmplitudes.get(p) : 0.0; newAmplitudes.set(p, currentAmp + 0.1 * resonanceFactor); } while (tempNum % p == 0) { tempNum /= p; } p++; } if (tempNum > 1) { const currentAmp = newAmplitudes.has(tempNum) ? newAmplitudes.get(tempNum) : 0.0; newAmplitudes.set(tempNum, currentAmp + 0.1 * resonanceFactor); } const collapsedState = PrimeState.fromAmplitudes(newAmplitudes); collapsedState.normalize(); // Ensure it's a valid quantum state return collapsedState; }