UNPKG

@sschepis/resolang

Version:

ResoLang - Core quantum resonance computation library

595 lines (504 loc) 18.9 kB
/** * Gödel Encoding System for P ≠ NP Proof Implementation * * This module implements Gödel numbering for encoding Turing machine configurations, * states, and transitions as prime-based numbers. This is essential for the * self-referential complexity analysis in the P ≠ NP proof. * * Based on the work of Javier Muñoz de la Cuesta's formal proof using * self-referential complexity S(M,x). */ import { ResonantFragment, EntangledNode, Prime } from '../resolang'; import { tensor, entropy } from '../operators'; import { toFixed } from '../utils'; // ============================================================================ // CORE GÖDEL ENCODING FUNCTIONS // ============================================================================ /** * Prime number generator for Gödel encoding * Uses deterministic prime sequence for consistent encoding */ export class PrimeGenerator { private static primes: Array<Prime> = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317 ]; /** * Get the nth prime number (0-indexed) */ public static getPrime(n: i32): Prime { if (n >= 0 && n < PrimeGenerator.primes.length) { return PrimeGenerator.primes[n]; } // Generate more primes if needed (simplified approach) return PrimeGenerator.primes[n % PrimeGenerator.primes.length] + (n / PrimeGenerator.primes.length) * 1000; } /** * Get the index of a prime number */ public static getPrimeIndex(prime: Prime): i32 { for (let i = 0; i < PrimeGenerator.primes.length; i++) { if (PrimeGenerator.primes[i] === prime) { return i; } } return -1; } } /** * Turing machine configuration for Gödel encoding */ export class TuringConfiguration { public state: string; // Current state (e.g., "q0", "q1", "qaccept") public tapeContent: string; // Tape content as string public headPosition: i32; // Read/write head position public stepNumber: i32; // Step number in computation public godelNumber: u64; // Gödel number encoding constructor(state: string, tapeContent: string, headPosition: i32, stepNumber: i32) { this.state = state; this.tapeContent = tapeContent; this.headPosition = headPosition; this.stepNumber = stepNumber; this.godelNumber = this.calculateGodelNumber(); } /** * Calculate Gödel number for this configuration * Uses formula: ⟨q,w,i⟩ = 2^⟨q⟩ × 3^⟨w⟩ × 5^i */ private calculateGodelNumber(): u64 { const stateGodel = this.encodeState(this.state); const tapeGodel = this.encodeTapeContent(this.tapeContent); const positionPrime = PrimeGenerator.getPrime(2); // Use 5 for position // Simplified calculation to avoid overflow // In practice, would use modular arithmetic let result: u64 = 1; // 2^⟨q⟩ component (limited to prevent overflow) const statePower = Math.min(stateGodel, 20); for (let i = 0; i < statePower; i++) { result *= 2; } // 3^⟨w⟩ component (limited) const tapePower = Math.min(tapeGodel % 10, 10); for (let i = 0; i < tapePower; i++) { result *= 3; } // 5^i component (limited) const positionPower = Math.min(this.headPosition, 8); for (let i = 0; i < positionPower; i++) { result *= positionPrime; } return result; } /** * Encode state string to number */ private encodeState(state: string): u32 { let hash: u32 = 0; for (let i = 0; i < state.length; i++) { hash = (hash * 31 + state.charCodeAt(i)) % 1000; } return hash; } /** * Encode tape content to number */ private encodeTapeContent(tape: string): u32 { let hash: u32 = 0; for (let i = 0; i < tape.length; i++) { const charCode = tape.charCodeAt(i); hash = (hash * 127 + charCode) % 10000; } return hash; } /** * Get string representation for debugging */ public toString(): string { return `Config(${this.state}, "${this.tapeContent}", ${this.headPosition}, step=${this.stepNumber}, godel=${this.godelNumber})`; } } /** * Turing machine description encoder */ export class TuringMachineEncoder { public states: Array<string>; public alphabet: Array<string>; public transitions: Array<Transition>; public startState: string; public acceptStates: Array<string>; public machineGodelNumber: u64; constructor( states: Array<string>, alphabet: Array<string>, transitions: Array<Transition>, startState: string, acceptStates: Array<string> ) { this.states = states; this.alphabet = alphabet; this.transitions = transitions; this.startState = startState; this.acceptStates = acceptStates; this.machineGodelNumber = this.calculateMachineGodel(); } /** * Calculate Gödel number for entire machine description * ⟨M⟩ = 2^⟨Q⟩ × 3^⟨Σ⟩ × 5^⟨δ⟩ × 7^⟨q0⟩ × 11^⟨F⟩ */ private calculateMachineGodel(): u64 { let result: u64 = 1; // Encode states const statesHash = this.encodeStringArray(this.states); for (let i = 0; i < Math.min(statesHash % 5, 5); i++) { result *= 2; } // Encode alphabet const alphabetHash = this.encodeStringArray(this.alphabet); for (let i = 0; i < Math.min(alphabetHash % 3, 3); i++) { result *= 3; } // Encode transitions (simplified) const transitionsHash = this.transitions.length; for (let i = 0; i < Math.min(transitionsHash % 4, 4); i++) { result *= 5; } return result; } private encodeStringArray(arr: Array<string>): u32 { let hash: u32 = 0; for (let i = 0; i < arr.length; i++) { for (let j = 0; j < arr[i].length; j++) { hash = (hash * 31 + arr[i].charCodeAt(j)) % 1000; } } return hash; } /** * Get string representation of the Turing machine */ public toString(): string { return `TuringMachine(states=${this.states.length}, alphabet=${this.alphabet.length}, transitions=${this.transitions.length}, start=${this.startState}, godel=${this.machineGodelNumber})`; } } /** * Transition function representation */ export class Transition { public fromState: string; public readSymbol: string; public toState: string; public writeSymbol: string; public direction: string; // "L" or "R" public godelNumber: u64; constructor( fromState: string, readSymbol: string, toState: string, writeSymbol: string, direction: string ) { this.fromState = fromState; this.readSymbol = readSymbol; this.toState = toState; this.writeSymbol = writeSymbol; this.direction = direction; this.godelNumber = this.calculateTransitionGodel(); } private calculateTransitionGodel(): u64 { let hash: u32 = 0; // Combine all transition components const combined = this.fromState + this.readSymbol + this.toState + this.writeSymbol + this.direction; for (let i = 0; i < combined.length; i++) { hash = (hash * 37 + combined.charCodeAt(i)) % 100000; } return hash; } public toString(): string { return `δ(${this.fromState}, ${this.readSymbol}) = (${this.toState}, ${this.writeSymbol}, ${this.direction})`; } } // ============================================================================ // QUANTUM GÖDEL ENCODING // ============================================================================ /** * Quantum-enhanced Gödel encoder using ResoLang's holographic memory */ export class QuantumGodelEncoder { private configurationHistory: Array<TuringConfiguration>; private machineDescription: TuringMachineEncoder; private quantumStates: Map<string, ResonantFragment>; constructor(machine: TuringMachineEncoder) { this.configurationHistory = new Array<TuringConfiguration>(); this.machineDescription = machine; this.quantumStates = new Map<string, ResonantFragment>(); } /** * Add configuration and create quantum encoding */ public addConfiguration(config: TuringConfiguration): void { this.configurationHistory.push(config); // Create quantum state representation const quantumState = this.createQuantumState(config); this.quantumStates.set(`config_${config.stepNumber}`, quantumState); } /** * Create quantum state from Turing configuration */ private createQuantumState(config: TuringConfiguration): ResonantFragment { const configString = `${config.state}_${config.tapeContent}_${config.headPosition}`; return ResonantFragment.encode(configString); } /** * Check if a configuration access is self-referential * Returns true if current config accesses prior configurations or machine description */ public isSelfreferentialAccess(currentStep: i32, accessedStep: i32): bool { if (currentStep <= accessedStep) { return false; // Can't access future configurations } const currentConfig = this.configurationHistory[currentStep]; const accessedConfig = this.configurationHistory[accessedStep]; // Check for direct state reference if (currentConfig.state === accessedConfig.state) { return true; } // Check for tape content overlap if (this.hasContentOverlap(currentConfig.tapeContent, accessedConfig.tapeContent)) { return true; } // Check quantum entanglement const currentQuantumState = this.quantumStates.get(`config_${currentStep}`); const accessedQuantumState = this.quantumStates.get(`config_${accessedStep}`); if (currentQuantumState && accessedQuantumState) { const entanglement = tensor(currentQuantumState, accessedQuantumState); const entanglementEntropy = entropy(entanglement); // High entanglement indicates self-referential access if (entanglementEntropy > 0.1) { return true; } } return false; } /** * Check if accessing machine description (always self-referential) */ public isMachineDescriptionAccess(config: TuringConfiguration): bool { // In a real implementation, would check if transition function // or state set is being accessed // Simplified: check if state name suggests introspection if (config.state.includes("check") || config.state.includes("verify") || config.state.includes("introspect")) { return true; } return false; } private hasContentOverlap(content1: string, content2: string): bool { // Check for substring overlap const minLength = Math.min(content1.length, content2.length); const threshold = Math.max(1, minLength / 3); // 33% overlap threshold for (let i = 0; i <= content1.length - threshold; i++) { const substring = content1.substr(i, threshold); if (content2.includes(substring)) { return true; } } return false; } /** * Calculate total self-referential complexity for the computation */ public calculateSelfreferentialComplexity(): i32 { let selfreferentialSteps = 0; for (let i = 0; i < this.configurationHistory.length; i++) { const currentConfig = this.configurationHistory[i]; let isSelfreferential = false; // Check machine description access if (this.isMachineDescriptionAccess(currentConfig)) { isSelfreferential = true; } // Check prior configuration access if (!isSelfreferential) { for (let j = 0; j < i; j++) { if (this.isSelfreferentialAccess(i, j)) { isSelfreferential = true; break; } } } if (isSelfreferential) { selfreferentialSteps++; } } return selfreferentialSteps; } /** * Get complexity analysis report */ public getComplexityReport(): GodelComplexityReport { const totalSteps = this.configurationHistory.length; const selfreferentialSteps = this.calculateSelfreferentialComplexity(); const ratio = totalSteps > 0 ? f64(selfreferentialSteps) / f64(totalSteps) : 0.0; return new GodelComplexityReport( totalSteps, selfreferentialSteps, ratio, this.machineDescription.machineGodelNumber, this.configurationHistory ); } } /** * Complexity analysis report */ export class GodelComplexityReport { public totalSteps: i32; public selfreferentialSteps: i32; public complexityRatio: f64; public machineGodelNumber: u64; public configurations: Array<TuringConfiguration>; constructor( totalSteps: i32, selfreferentialSteps: i32, complexityRatio: f64, machineGodelNumber: u64, configurations: Array<TuringConfiguration> ) { this.totalSteps = totalSteps; this.selfreferentialSteps = selfreferentialSteps; this.complexityRatio = complexityRatio; this.machineGodelNumber = machineGodelNumber; this.configurations = configurations; } public toString(): string { return `GodelReport(total=${this.totalSteps}, selfref=${this.selfreferentialSteps}, ratio=${toFixed(this.complexityRatio, 3)}, machine_godel=${this.machineGodelNumber})`; } } // ============================================================================ // EXAMPLE DEMONSTRATIONS // ============================================================================ /** * Example 1: Basic Gödel Encoding */ export function demonstrateBasicGodelEncoding(): void { console.log("=== Example 1: Basic Gödel Encoding ==="); // Create simple configurations const config1 = new TuringConfiguration("q0", "101", 0, 0); const config2 = new TuringConfiguration("q1", "111", 1, 1); const config3 = new TuringConfiguration("q0", "101", 2, 2); // Same state as config1 console.log(`Config 1: ${config1.toString()}`); console.log(`Config 2: ${config2.toString()}`); console.log(`Config 3: ${config3.toString()}`); console.log(`Gödel numbers: ${config1.godelNumber}, ${config2.godelNumber}, ${config3.godelNumber}`); } /** * Example 2: Turing Machine Encoding */ export function demonstrateTuringMachineEncoding(): void { console.log("\n=== Example 2: Turing Machine Encoding ==="); // Create a simple Turing machine const states = ["q0", "q1", "qaccept", "qreject"]; const alphabet = ["0", "1", "B"]; // B = blank const transitions = [ new Transition("q0", "0", "q1", "1", "R"), new Transition("q0", "1", "q0", "0", "R"), new Transition("q1", "0", "qaccept", "0", "R"), new Transition("q1", "1", "qreject", "1", "R") ]; const machine = new TuringMachineEncoder( states, alphabet, transitions, "q0", ["qaccept"] ); console.log(`Machine Gödel number: ${machine.machineGodelNumber}`); console.log(`Number of states: ${machine.states.length}`); console.log(`Number of transitions: ${machine.transitions.length}`); for (let i = 0; i < transitions.length; i++) { console.log(` ${transitions[i].toString()} [Gödel: ${transitions[i].godelNumber}]`); } } /** * Example 3: Self-Referential Complexity Detection */ export function demonstrateSelfreferentialDetection(): void { console.log("\n=== Example 3: Self-Referential Complexity Detection ==="); // Create machine const states = ["q0", "q1", "q_check", "qaccept"]; const alphabet = ["0", "1"]; const transitions = [ new Transition("q0", "0", "q1", "1", "R"), new Transition("q1", "1", "q_check", "0", "L"), // Check state - potentially self-referential new Transition("q_check", "0", "q0", "0", "R"), // References q0 - self-referential! new Transition("q_check", "1", "qaccept", "1", "R") ]; const machine = new TuringMachineEncoder(states, alphabet, transitions, "q0", ["qaccept"]); const encoder = new QuantumGodelEncoder(machine); // Simulate computation steps const steps = [ new TuringConfiguration("q0", "01", 0, 0), new TuringConfiguration("q1", "11", 1, 1), new TuringConfiguration("q_check", "10", 0, 2), // Self-referential state new TuringConfiguration("q0", "10", 1, 3) // Back to q0 - self-referential! ]; for (let i = 0; i < steps.length; i++) { encoder.addConfiguration(steps[i]); } const report = encoder.getComplexityReport(); console.log(`Complexity Report: ${report.toString()}`); // Check specific self-referential accesses console.log(`Step 2->0 self-referential: ${encoder.isSelfreferentialAccess(2, 0)}`); console.log(`Step 3->0 self-referential: ${encoder.isSelfreferentialAccess(3, 0)}`); console.log(`Machine description access in step 2: ${encoder.isMachineDescriptionAccess(steps[2])}`); } /** * Example 4: Quantum Entanglement in Gödel Encoding */ export function demonstrateQuantumGodelEntanglement(): void { console.log("\n=== Example 4: Quantum Gödel Entanglement ==="); const machine = new TuringMachineEncoder( ["q0", "q1"], ["0", "1"], [new Transition("q0", "0", "q1", "1", "R")], "q0", ["q1"] ); const encoder = new QuantumGodelEncoder(machine); // Create configurations with quantum entanglement const config1 = new TuringConfiguration("q0", "quantum_state_1", 0, 0); const config2 = new TuringConfiguration("q1", "quantum_state_2", 1, 1); const config3 = new TuringConfiguration("q0", "quantum_state_1", 2, 2); // Similar to config1 encoder.addConfiguration(config1); encoder.addConfiguration(config2); encoder.addConfiguration(config3); // Check quantum entanglement const state1 = ResonantFragment.encode("quantum_state_1"); const state2 = ResonantFragment.encode("quantum_state_2"); const entanglement = tensor(state1, state2); console.log(`Quantum state 1 entropy: ${toFixed(entropy(state1), 4)}`); console.log(`Quantum state 2 entropy: ${toFixed(entropy(state2), 4)}`); console.log(`Entanglement entropy: ${toFixed(entropy(entanglement), 4)}`); const report = encoder.getComplexityReport(); console.log(`Final complexity: ${report.toString()}`); } /** * Run all Gödel encoding examples */ export function runAllGodelEncodingExamples(): void { console.log("🔢 Gödel Encoding System for P ≠ NP Proof"); console.log("Implementing prime-based configuration encoding\n"); demonstrateBasicGodelEncoding(); demonstrateTuringMachineEncoding(); demonstrateSelfreferentialDetection(); demonstrateQuantumGodelEntanglement(); console.log("\n✅ Gödel encoding system operational!"); console.log("Ready for Turing machine simulation in Phase 1."); }