@splitsoftware/splitio-commons
Version:
Split JavaScript SDK common components
220 lines (219 loc) • 8.22 kB
JavaScript
Object.defineProperty(exports, "__esModule", { value: true });
exports.hash128 = void 0;
/* eslint-disable no-fallthrough */
var common_1 = require("./common");
/*
* +----------------------------------------------------------------------------------+
* | murmurHash3.js v3.0.0 (http://github.com/karanlyons/murmurHash3.js) |
* | A TypeScript/JavaScript implementation of MurmurHash3's hashing algorithms. |
* |----------------------------------------------------------------------------------|
* | Copyright (c) 2012-2020 Karan Lyons. Freely distributable under the MIT license. |
* +----------------------------------------------------------------------------------+
*/
// PRIVATE FUNCTIONS
// -----------------
function _x64Add(m, n) {
//
// Given two 64bit ints (as an array of two 32bit ints) returns the two
// added together as a 64bit int (as an array of two 32bit ints).
//
m = [m[0] >>> 16, m[0] & 0xffff, m[1] >>> 16, m[1] & 0xffff];
n = [n[0] >>> 16, n[0] & 0xffff, n[1] >>> 16, n[1] & 0xffff];
var o = [0, 0, 0, 0];
o[3] += m[3] + n[3];
o[2] += o[3] >>> 16;
o[3] &= 0xffff;
o[2] += m[2] + n[2];
o[1] += o[2] >>> 16;
o[2] &= 0xffff;
o[1] += m[1] + n[1];
o[0] += o[1] >>> 16;
o[1] &= 0xffff;
o[0] += m[0] + n[0];
o[0] &= 0xffff;
return [(o[0] << 16) | o[1], (o[2] << 16) | o[3]];
}
function _x64Multiply(m, n) {
//
// Given two 64bit ints (as an array of two 32bit ints) returns the two
// multiplied together as a 64bit int (as an array of two 32bit ints).
//
m = [m[0] >>> 16, m[0] & 0xffff, m[1] >>> 16, m[1] & 0xffff];
n = [n[0] >>> 16, n[0] & 0xffff, n[1] >>> 16, n[1] & 0xffff];
var o = [0, 0, 0, 0];
o[3] += m[3] * n[3];
o[2] += o[3] >>> 16;
o[3] &= 0xffff;
o[2] += m[2] * n[3];
o[1] += o[2] >>> 16;
o[2] &= 0xffff;
o[2] += m[3] * n[2];
o[1] += o[2] >>> 16;
o[2] &= 0xffff;
o[1] += m[1] * n[3];
o[0] += o[1] >>> 16;
o[1] &= 0xffff;
o[1] += m[2] * n[2];
o[0] += o[1] >>> 16;
o[1] &= 0xffff;
o[1] += m[3] * n[1];
o[0] += o[1] >>> 16;
o[1] &= 0xffff;
o[0] += (m[0] * n[3]) + (m[1] * n[2]) + (m[2] * n[1]) + (m[3] * n[0]);
o[0] &= 0xffff;
return [(o[0] << 16) | o[1], (o[2] << 16) | o[3]];
}
function _x64Rotl(m, n) {
//
// Given a 64bit int (as an array of two 32bit ints) and an int
// representing a number of bit positions, returns the 64bit int (as an
// array of two 32bit ints) rotated left by that number of positions.
//
n %= 64;
if (n === 32) {
return [m[1], m[0]];
}
else if (n < 32) {
return [(m[0] << n) | (m[1] >>> (32 - n)), (m[1] << n) | (m[0] >>> (32 - n))];
}
else {
n -= 32;
return [(m[1] << n) | (m[0] >>> (32 - n)), (m[0] << n) | (m[1] >>> (32 - n))];
}
}
function _x64LeftShift(m, n) {
//
// Given a 64bit int (as an array of two 32bit ints) and an int
// representing a number of bit positions, returns the 64bit int (as an
// array of two 32bit ints) shifted left by that number of positions.
//
n %= 64;
if (n === 0) {
return m;
}
else if (n < 32) {
return [(m[0] << n) | (m[1] >>> (32 - n)), m[1] << n];
}
else {
return [m[1] << (n - 32), 0];
}
}
function _x64Xor(m, n) {
//
// Given two 64bit ints (as an array of two 32bit ints) returns the two
// xored together as a 64bit int (as an array of two 32bit ints).
//
return [m[0] ^ n[0], m[1] ^ n[1]];
}
function _x64Fmix(h) {
//
// Given a block, returns murmurHash3's final x64 mix of that block.
// (`[0, h[0] >>> 1]` is a 33 bit unsigned right shift. This is the
// only place where we need to right shift 64bit ints.)
//
h = _x64Xor(h, [0, h[0] >>> 1]);
h = _x64Multiply(h, [0xff51afd7, 0xed558ccd]);
h = _x64Xor(h, [0, h[0] >>> 1]);
h = _x64Multiply(h, [0xc4ceb9fe, 0x1a85ec53]);
h = _x64Xor(h, [0, h[0] >>> 1]);
return h;
}
// PUBLIC FUNCTIONS
// ----------------
function hash128x64(key, seed) {
//
// Given a string and an optional seed as an int, returns a 128 bit
// hash using the x64 flavor of MurmurHash3, as an unsigned hex.
//
key = key || '';
seed = seed || 0;
var remainder = key.length % 16;
var bytes = key.length - remainder;
var h1 = [0, seed];
var h2 = [0, seed];
var k1 = [0, 0];
var k2 = [0, 0];
var c1 = [0x87c37b91, 0x114253d5];
var c2 = [0x4cf5ad43, 0x2745937f];
for (var i = 0; i < bytes; i = i + 16) {
k1 = [((key.charCodeAt(i + 4) & 0xff)) | ((key.charCodeAt(i + 5) & 0xff) << 8) | ((key.charCodeAt(i + 6) & 0xff) << 16) | ((key.charCodeAt(i + 7) & 0xff) << 24), ((key.charCodeAt(i) & 0xff)) | ((key.charCodeAt(i + 1) &
0xff) << 8) | ((key.charCodeAt(i + 2) & 0xff) << 16) | ((key.charCodeAt(i + 3) & 0xff) << 24)];
k2 = [((key.charCodeAt(i + 12) & 0xff)) | ((key.charCodeAt(i + 13) & 0xff) << 8) | ((key.charCodeAt(i + 14) & 0xff) << 16) | ((key.charCodeAt(i + 15) & 0xff) << 24), ((key.charCodeAt(i + 8) & 0xff)) | ((key.charCodeAt(i +
9) & 0xff) << 8) | ((key.charCodeAt(i + 10) & 0xff) << 16) | ((key.charCodeAt(i + 11) & 0xff) << 24)];
k1 = _x64Multiply(k1, c1);
k1 = _x64Rotl(k1, 31);
k1 = _x64Multiply(k1, c2);
h1 = _x64Xor(h1, k1);
h1 = _x64Rotl(h1, 27);
h1 = _x64Add(h1, h2);
h1 = _x64Add(_x64Multiply(h1, [0, 5]), [0, 0x52dce729]);
k2 = _x64Multiply(k2, c2);
k2 = _x64Rotl(k2, 33);
k2 = _x64Multiply(k2, c1);
h2 = _x64Xor(h2, k2);
h2 = _x64Rotl(h2, 31);
h2 = _x64Add(h2, h1);
h2 = _x64Add(_x64Multiply(h2, [0, 5]), [0, 0x38495ab5]);
}
k1 = [0, 0];
k2 = [0, 0];
switch (remainder) {
case 15:
k2 = _x64Xor(k2, _x64LeftShift([0, key.charCodeAt(i + 14)], 48));
case 14:
k2 = _x64Xor(k2, _x64LeftShift([0, key.charCodeAt(i + 13)], 40));
case 13:
k2 = _x64Xor(k2, _x64LeftShift([0, key.charCodeAt(i + 12)], 32));
case 12:
k2 = _x64Xor(k2, _x64LeftShift([0, key.charCodeAt(i + 11)], 24));
case 11:
k2 = _x64Xor(k2, _x64LeftShift([0, key.charCodeAt(i + 10)], 16));
case 10:
k2 = _x64Xor(k2, _x64LeftShift([0, key.charCodeAt(i + 9)], 8));
case 9:
k2 = _x64Xor(k2, [0, key.charCodeAt(i + 8)]);
k2 = _x64Multiply(k2, c2);
k2 = _x64Rotl(k2, 33);
k2 = _x64Multiply(k2, c1);
h2 = _x64Xor(h2, k2);
case 8:
k1 = _x64Xor(k1, _x64LeftShift([0, key.charCodeAt(i + 7)], 56));
case 7:
k1 = _x64Xor(k1, _x64LeftShift([0, key.charCodeAt(i + 6)], 48));
case 6:
k1 = _x64Xor(k1, _x64LeftShift([0, key.charCodeAt(i + 5)], 40));
case 5:
k1 = _x64Xor(k1, _x64LeftShift([0, key.charCodeAt(i + 4)], 32));
case 4:
k1 = _x64Xor(k1, _x64LeftShift([0, key.charCodeAt(i + 3)], 24));
case 3:
k1 = _x64Xor(k1, _x64LeftShift([0, key.charCodeAt(i + 2)], 16));
case 2:
k1 = _x64Xor(k1, _x64LeftShift([0, key.charCodeAt(i + 1)], 8));
case 1:
k1 = _x64Xor(k1, [0, key.charCodeAt(i)]);
k1 = _x64Multiply(k1, c1);
k1 = _x64Rotl(k1, 31);
k1 = _x64Multiply(k1, c2);
h1 = _x64Xor(h1, k1);
}
h1 = _x64Xor(h1, [0, key.length]);
h2 = _x64Xor(h2, [0, key.length]);
h1 = _x64Add(h1, h2);
h2 = _x64Add(h2, h1);
h1 = _x64Fmix(h1);
h2 = _x64Fmix(h2);
h1 = _x64Add(h1, h2);
h2 = _x64Add(h2, h1);
return ('00000000' + (h1[0] >>> 0).toString(16)).slice(-8) + ('00000000' + (h1[1] >>> 0).toString(16)).slice(-8) + ('00000000' + (h2[0] >>> 0).toString(16)).slice(-8) + ('00000000' + (h2[1] >>> 0).toString(16)).slice(-8);
}
/**
* x64 version of Murmur3 for 128bits.
*
* @param str - The string to hash.
*/
function hash128(str, seed) {
return hash128x64((0, common_1.UTF16ToUTF8)(str), seed >>> 0);
}
exports.hash128 = hash128;
;