UNPKG

@splitsoftware/splitio-commons

Version:
428 lines (422 loc) 16.7 kB
"use strict"; /* Trimmed version of "fflate" library (https://www.npmjs.com/package/fflate/v/0.7.1) used for GZIP/Zlib decompression in JavaScript, with the minimal modules used by the SDK. MIT License Copyright (c) 2020 Arjun Barrett Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* eslint-disable */ // @ts-nocheck Object.defineProperty(exports, "__esModule", { value: true }); exports.algorithms = void 0; exports.algorithms = (function iifeDecompress() { // Handle runtimes without typed arrays if ([typeof Uint8Array, typeof Uint16Array, typeof Uint32Array].some(function (v) { return v != 'function'; })) { return 'global Uint8Array object is not available for gzip/zlib decompression'; } // DEFLATE is a complex format; to read this code, you should probably check the RFC first: // aliases for shorter compressed code (most minifers don't do this) var u8 = Uint8Array, u16 = Uint16Array, u32 = Uint32Array; // fixed length extra bits var fleb = new u8([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, /* unused */ 0, 0, /* impossible */ 0]); // fixed distance extra bits // see fleb note var fdeb = new u8([0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, /* unused */ 0, 0]); // code length index map var clim = new u8([16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15]); // get base, reverse index map from extra bits var freb = function (eb, start) { var b = new u16(31); for (var i = 0; i < 31; ++i) { b[i] = start += 1 << eb[i - 1]; } // numbers here are at max 18 bits var r = new u32(b[30]); for (var i = 1; i < 30; ++i) { for (var j = b[i]; j < b[i + 1]; ++j) { r[j] = ((j - b[i]) << 5) | i; } } return [b, r]; }; var _a = freb(fleb, 2), fl = _a[0], revfl = _a[1]; // we can ignore the fact that the other numbers are wrong; they never happen anyway fl[28] = 258, revfl[258] = 28; var _b = freb(fdeb, 0), fd = _b[0]; // map of value to reverse (assuming 16 bits) var rev = new u16(32768); for (var i = 0; i < 32768; ++i) { // reverse table algorithm from SO var x = ((i & 0xAAAA) >>> 1) | ((i & 0x5555) << 1); x = ((x & 0xCCCC) >>> 2) | ((x & 0x3333) << 2); x = ((x & 0xF0F0) >>> 4) | ((x & 0x0F0F) << 4); rev[i] = (((x & 0xFF00) >>> 8) | ((x & 0x00FF) << 8)) >>> 1; } // create huffman tree from u8 "map": index -> code length for code index // mb (max bits) must be at most 15 // TODO: optimize/split up? var hMap = (function (cd, mb, r) { var s = cd.length; // index var i = 0; // u16 "map": index -> # of codes with bit length = index var l = new u16(mb); // length of cd must be 288 (total # of codes) for (; i < s; ++i) ++l[cd[i] - 1]; // u16 "map": index -> minimum code for bit length = index var le = new u16(mb); for (i = 0; i < mb; ++i) { le[i] = (le[i - 1] + l[i - 1]) << 1; } var co; if (r) { // u16 "map": index -> number of actual bits, symbol for code co = new u16(1 << mb); // bits to remove for reverser var rvb = 15 - mb; for (i = 0; i < s; ++i) { // ignore 0 lengths if (cd[i]) { // num encoding both symbol and bits read var sv = (i << 4) | cd[i]; // free bits var r_1 = mb - cd[i]; // start value var v = le[cd[i] - 1]++ << r_1; // m is end value for (var m = v | ((1 << r_1) - 1); v <= m; ++v) { // every 16 bit value starting with the code yields the same result co[rev[v] >>> rvb] = sv; } } } } else { co = new u16(s); for (i = 0; i < s; ++i) { if (cd[i]) { co[i] = rev[le[cd[i] - 1]++] >>> (15 - cd[i]); } } } return co; }); // fixed length tree var flt = new u8(288); for (var i = 0; i < 144; ++i) flt[i] = 8; for (var i = 144; i < 256; ++i) flt[i] = 9; for (var i = 256; i < 280; ++i) flt[i] = 7; for (var i = 280; i < 288; ++i) flt[i] = 8; // fixed distance tree var fdt = new u8(32); for (var i = 0; i < 32; ++i) fdt[i] = 5; // fixed length map var flrm = /*#__PURE__*/ hMap(flt, 9, 1); // fixed distance map var fdrm = /*#__PURE__*/ hMap(fdt, 5, 1); // find max of array var max = function (a) { var m = a[0]; for (var i = 1; i < a.length; ++i) { if (a[i] > m) m = a[i]; } return m; }; // read d, starting at bit p and mask with m var bits = function (d, p, m) { var o = (p / 8) | 0; return ((d[o] | (d[o + 1] << 8)) >> (p & 7)) & m; }; // read d, starting at bit p continuing for at least 16 bits var bits16 = function (d, p) { var o = (p / 8) | 0; return ((d[o] | (d[o + 1] << 8) | (d[o + 2] << 16)) >> (p & 7)); }; // get end of byte var shft = function (p) { return ((p + 7) / 8) | 0; }; // typed array slice - allows garbage collector to free original reference, // while being more compatible than .slice var slc = function (v, s, e) { if (s == null || s < 0) s = 0; if (e == null || e > v.length) e = v.length; // can't use .constructor in case user-supplied var n = new (v instanceof u16 ? u16 : v instanceof u32 ? u32 : u8)(e - s); n.set(v.subarray(s, e)); return n; }; // error codes var ec = [ 'unexpected EOF', 'invalid block type', 'invalid length/literal', 'invalid distance', 'stream finished', 'no stream handler', , 'no callback', 'invalid UTF-8 data', 'extra field too long', 'date not in range 1980-2099', 'filename too long', 'stream finishing', 'invalid zip data' // determined by unknown compression method ]; var err = function (ind, msg, nt) { var e = new Error(msg || ec[ind]); e.code = ind; if (Error.captureStackTrace) Error.captureStackTrace(e, err); if (!nt) throw e; return e; }; // expands raw DEFLATE data var inflt = function (dat, buf, st) { // source length var sl = dat.length; if (!sl || (st && st.f && !st.l)) return buf || new u8(0); // have to estimate size var noBuf = !buf || st; // no state var noSt = !st || st.i; if (!st) st = {}; // Assumes roughly 33% compression ratio average if (!buf) buf = new u8(sl * 3); // ensure buffer can fit at least l elements var cbuf = function (l) { var bl = buf.length; // need to increase size to fit if (l > bl) { // Double or set to necessary, whichever is greater var nbuf = new u8(Math.max(bl * 2, l)); nbuf.set(buf); buf = nbuf; } }; // last chunk bitpos bytes var final = st.f || 0, pos = st.p || 0, bt = st.b || 0, lm = st.l, dm = st.d, lbt = st.m, dbt = st.n; // total bits var tbts = sl * 8; do { if (!lm) { // BFINAL - this is only 1 when last chunk is next final = bits(dat, pos, 1); // type: 0 = no compression, 1 = fixed huffman, 2 = dynamic huffman var type = bits(dat, pos + 1, 3); pos += 3; if (!type) { // go to end of byte boundary var s = shft(pos) + 4, l = dat[s - 4] | (dat[s - 3] << 8), t = s + l; if (t > sl) { if (noSt) err(0); break; } // ensure size if (noBuf) cbuf(bt + l); // Copy over uncompressed data buf.set(dat.subarray(s, t), bt); // Get new bitpos, update byte count st.b = bt += l, st.p = pos = t * 8, st.f = final; continue; } else if (type == 1) lm = flrm, dm = fdrm, lbt = 9, dbt = 5; else if (type == 2) { // literal lengths var hLit = bits(dat, pos, 31) + 257, hcLen = bits(dat, pos + 10, 15) + 4; var tl = hLit + bits(dat, pos + 5, 31) + 1; pos += 14; // length+distance tree var ldt = new u8(tl); // code length tree var clt = new u8(19); for (var i = 0; i < hcLen; ++i) { // use index map to get real code clt[clim[i]] = bits(dat, pos + i * 3, 7); } pos += hcLen * 3; // code lengths bits var clb = max(clt), clbmsk = (1 << clb) - 1; // code lengths map var clm = hMap(clt, clb, 1); for (var i = 0; i < tl;) { var r = clm[bits(dat, pos, clbmsk)]; // bits read pos += r & 15; // symbol var s = r >>> 4; // code length to copy if (s < 16) { ldt[i++] = s; } else { // copy count var c = 0, n = 0; if (s == 16) n = 3 + bits(dat, pos, 3), pos += 2, c = ldt[i - 1]; else if (s == 17) n = 3 + bits(dat, pos, 7), pos += 3; else if (s == 18) n = 11 + bits(dat, pos, 127), pos += 7; while (n--) ldt[i++] = c; } } // length tree distance tree var lt = ldt.subarray(0, hLit), dt = ldt.subarray(hLit); // max length bits lbt = max(lt); // max dist bits dbt = max(dt); lm = hMap(lt, lbt, 1); dm = hMap(dt, dbt, 1); } else err(1); if (pos > tbts) { if (noSt) err(0); break; } } // Make sure the buffer can hold this + the largest possible addition // Maximum chunk size (practically, theoretically infinite) is 2^17; if (noBuf) cbuf(bt + 131072); var lms = (1 << lbt) - 1, dms = (1 << dbt) - 1; var lpos = pos; for (;; lpos = pos) { // bits read, code var c = lm[bits16(dat, pos) & lms], sym = c >>> 4; pos += c & 15; if (pos > tbts) { if (noSt) err(0); break; } if (!c) err(2); if (sym < 256) buf[bt++] = sym; else if (sym == 256) { lpos = pos, lm = null; break; } else { var add = sym - 254; // no extra bits needed if less if (sym > 264) { // index var i = sym - 257, b = fleb[i]; add = bits(dat, pos, (1 << b) - 1) + fl[i]; pos += b; } // dist var d = dm[bits16(dat, pos) & dms], dsym = d >>> 4; if (!d) err(3); pos += d & 15; var dt = fd[dsym]; if (dsym > 3) { var b = fdeb[dsym]; dt += bits16(dat, pos) & ((1 << b) - 1), pos += b; } if (pos > tbts) { if (noSt) err(0); break; } if (noBuf) cbuf(bt + 131072); var end = bt + add; for (; bt < end; bt += 4) { buf[bt] = buf[bt - dt]; buf[bt + 1] = buf[bt + 1 - dt]; buf[bt + 2] = buf[bt + 2 - dt]; buf[bt + 3] = buf[bt + 3 - dt]; } bt = end; } } st.l = lm, st.p = lpos, st.b = bt, st.f = final; if (lm) final = 1, st.m = lbt, st.d = dm, st.n = dbt; } while (!final); return bt == buf.length ? buf : slc(buf, 0, bt); }; // gzip footer: -8 to -4 = CRC, -4 to -0 is length // gzip start var gzs = function (d) { if (d[0] != 31 || d[1] != 139 || d[2] != 8) err(6, 'invalid gzip data'); var flg = d[3]; var st = 10; if (flg & 4) st += d[10] | (d[11] << 8) + 2; for (var zs = (flg >> 3 & 1) + (flg >> 4 & 1); zs > 0; zs -= !d[st++]) ; return st + (flg & 2); }; // gzip length var gzl = function (d) { var l = d.length; return ((d[l - 4] | d[l - 3] << 8 | d[l - 2] << 16) | (d[l - 1] << 24)) >>> 0; }; // zlib valid var zlv = function (d) { if ((d[0] & 15) != 8 || (d[0] >>> 4) > 7 || ((d[0] << 8 | d[1]) % 31)) err(6, 'invalid zlib data'); if (d[1] & 32) err(6, 'invalid zlib data: preset dictionaries not supported'); }; return { /** * Expands GZIP data * @param data - The data to decompress * @param out - Where to write the data. GZIP already encodes the output size, so providing this doesn't save memory. * @returns The decompressed version of the data */ gunzipSync: function (data, out) { return inflt(data.subarray(gzs(data), -8), out || new u8(gzl(data))); }, /** * Expands Zlib data * @param data - The data to decompress * @param out - Where to write the data. Saves memory if you know the decompressed size and provide an output buffer of that length. * @returns The decompressed version of the data */ unzlibSync: function (data, out) { return inflt((zlv(data), data.subarray(2, -4)), out); } }; })();