UNPKG

@snowdigital/whisper-node

Version:
88 lines (59 loc) 2.06 kB
# whisper.cpp/tests/earnings21 [Earnings-21](https://arxiv.org/abs/2104.11348) is a real-world benchmark dataset that contains 39-hours of long-form English speech, sourced from public earning calls. This directory contains a set of scripts to evaluate the performance of whisper.cpp on Earnings-21 corpus. ## Quick Start 1. (Pre-requirement) Compile `whisper-cli` and prepare the Whisper model in `ggml` format. ``` $ # Execute the commands below in the project root dir. $ cmake -B build $ cmake --build build --config Release $ ./models/download-ggml-model.sh tiny ``` Consult [whisper.cpp/README.md](../../README.md) for more details. 2. Download the audio files. ``` $ make get-audio ``` 3. Set up the environment to compute WER score. ``` $ pip install -r requirements.txt ``` For example, if you use `virtualenv`, you can set up it as follows: ``` $ python3 -m venv venv $ . venv/bin/activate $ pip install -r requirements.txt ``` 4. Run the benchmark test. ``` $ make ``` ## How-to guides ### How to change the inference parameters Create `eval.conf` and override variables. ``` WHISPER_MODEL = large-v3-turbo WHISPER_FLAGS = --no-prints --threads 8 --language en --output-txt ``` Check out `eval.mk` for more details. ### How to perform the benchmark test on a 10-hour subset Earnings-21 provides a small but representative subset (approximately 10-hour audio data) to evaluate ASR systems quickly. To switch to the subset, create `eval.conf` and add the following line: ``` EARNINGS21_EVAL10 = yes ``` ### How to run the benchmark test using VAD First, you need to download a VAD model: ``` $ # Execute the commands below in the project root dir. $ ./models/download-vad-model.sh silero-v5.1.2 ``` Create `eval.conf` with the following content: ``` WHISPER_FLAGS = --no-prints --language en --output-txt --vad --vad-model ../../models/ggml-silero-v5.1.2.bin ```