UNPKG

@skybloxsystems/ticket-bot

Version:
1,927 lines (1,567 loc) 127 kB
/* * decimal.js v10.3.1 * An arbitrary-precision Decimal type for JavaScript. * https://github.com/MikeMcl/decimal.js * Copyright (c) 2021 Michael Mclaughlin <M8ch88l@gmail.com> * MIT Licence */ // ----------------------------------- EDITABLE DEFAULTS ------------------------------------ // // The maximum exponent magnitude. // The limit on the value of `toExpNeg`, `toExpPos`, `minE` and `maxE`. var EXP_LIMIT = 9e15, // 0 to 9e15 // The limit on the value of `precision`, and on the value of the first argument to // `toDecimalPlaces`, `toExponential`, `toFixed`, `toPrecision` and `toSignificantDigits`. MAX_DIGITS = 1e9, // 0 to 1e9 // Base conversion alphabet. NUMERALS = '0123456789abcdef', // The natural logarithm of 10 (1025 digits). LN10 = '2.3025850929940456840179914546843642076011014886287729760333279009675726096773524802359972050895982983419677840422862486334095254650828067566662873690987816894829072083255546808437998948262331985283935053089653777326288461633662222876982198867465436674744042432743651550489343149393914796194044002221051017141748003688084012647080685567743216228355220114804663715659121373450747856947683463616792101806445070648000277502684916746550586856935673420670581136429224554405758925724208241314695689016758940256776311356919292033376587141660230105703089634572075440370847469940168269282808481184289314848524948644871927809676271275775397027668605952496716674183485704422507197965004714951050492214776567636938662976979522110718264549734772662425709429322582798502585509785265383207606726317164309505995087807523710333101197857547331541421808427543863591778117054309827482385045648019095610299291824318237525357709750539565187697510374970888692180205189339507238539205144634197265287286965110862571492198849978748873771345686209167058', // Pi (1025 digits). PI = '3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989380952572010654858632789', // The initial configuration properties of the Decimal constructor. DEFAULTS = { // These values must be integers within the stated ranges (inclusive). // Most of these values can be changed at run-time using the `Decimal.config` method. // The maximum number of significant digits of the result of a calculation or base conversion. // E.g. `Decimal.config({ precision: 20 });` precision: 20, // 1 to MAX_DIGITS // The rounding mode used when rounding to `precision`. // // ROUND_UP 0 Away from zero. // ROUND_DOWN 1 Towards zero. // ROUND_CEIL 2 Towards +Infinity. // ROUND_FLOOR 3 Towards -Infinity. // ROUND_HALF_UP 4 Towards nearest neighbour. If equidistant, up. // ROUND_HALF_DOWN 5 Towards nearest neighbour. If equidistant, down. // ROUND_HALF_EVEN 6 Towards nearest neighbour. If equidistant, towards even neighbour. // ROUND_HALF_CEIL 7 Towards nearest neighbour. If equidistant, towards +Infinity. // ROUND_HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity. // // E.g. // `Decimal.rounding = 4;` // `Decimal.rounding = Decimal.ROUND_HALF_UP;` rounding: 4, // 0 to 8 // The modulo mode used when calculating the modulus: a mod n. // The quotient (q = a / n) is calculated according to the corresponding rounding mode. // The remainder (r) is calculated as: r = a - n * q. // // UP 0 The remainder is positive if the dividend is negative, else is negative. // DOWN 1 The remainder has the same sign as the dividend (JavaScript %). // FLOOR 3 The remainder has the same sign as the divisor (Python %). // HALF_EVEN 6 The IEEE 754 remainder function. // EUCLID 9 Euclidian division. q = sign(n) * floor(a / abs(n)). Always positive. // // Truncated division (1), floored division (3), the IEEE 754 remainder (6), and Euclidian // division (9) are commonly used for the modulus operation. The other rounding modes can also // be used, but they may not give useful results. modulo: 1, // 0 to 9 // The exponent value at and beneath which `toString` returns exponential notation. // JavaScript numbers: -7 toExpNeg: -7, // 0 to -EXP_LIMIT // The exponent value at and above which `toString` returns exponential notation. // JavaScript numbers: 21 toExpPos: 21, // 0 to EXP_LIMIT // The minimum exponent value, beneath which underflow to zero occurs. // JavaScript numbers: -324 (5e-324) minE: -EXP_LIMIT, // -1 to -EXP_LIMIT // The maximum exponent value, above which overflow to Infinity occurs. // JavaScript numbers: 308 (1.7976931348623157e+308) maxE: EXP_LIMIT, // 1 to EXP_LIMIT // Whether to use cryptographically-secure random number generation, if available. crypto: false // true/false }, // ----------------------------------- END OF EDITABLE DEFAULTS ------------------------------- // inexact, quadrant, external = true, decimalError = '[DecimalError] ', invalidArgument = decimalError + 'Invalid argument: ', precisionLimitExceeded = decimalError + 'Precision limit exceeded', cryptoUnavailable = decimalError + 'crypto unavailable', tag = '[object Decimal]', mathfloor = Math.floor, mathpow = Math.pow, isBinary = /^0b([01]+(\.[01]*)?|\.[01]+)(p[+-]?\d+)?$/i, isHex = /^0x([0-9a-f]+(\.[0-9a-f]*)?|\.[0-9a-f]+)(p[+-]?\d+)?$/i, isOctal = /^0o([0-7]+(\.[0-7]*)?|\.[0-7]+)(p[+-]?\d+)?$/i, isDecimal = /^(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i, BASE = 1e7, LOG_BASE = 7, MAX_SAFE_INTEGER = 9007199254740991, LN10_PRECISION = LN10.length - 1, PI_PRECISION = PI.length - 1, // Decimal.prototype object P = { toStringTag: tag }; // Decimal prototype methods /* * absoluteValue abs * ceil * clampedTo clamp * comparedTo cmp * cosine cos * cubeRoot cbrt * decimalPlaces dp * dividedBy div * dividedToIntegerBy divToInt * equals eq * floor * greaterThan gt * greaterThanOrEqualTo gte * hyperbolicCosine cosh * hyperbolicSine sinh * hyperbolicTangent tanh * inverseCosine acos * inverseHyperbolicCosine acosh * inverseHyperbolicSine asinh * inverseHyperbolicTangent atanh * inverseSine asin * inverseTangent atan * isFinite * isInteger isInt * isNaN * isNegative isNeg * isPositive isPos * isZero * lessThan lt * lessThanOrEqualTo lte * logarithm log * [maximum] [max] * [minimum] [min] * minus sub * modulo mod * naturalExponential exp * naturalLogarithm ln * negated neg * plus add * precision sd * round * sine sin * squareRoot sqrt * tangent tan * times mul * toBinary * toDecimalPlaces toDP * toExponential * toFixed * toFraction * toHexadecimal toHex * toNearest * toNumber * toOctal * toPower pow * toPrecision * toSignificantDigits toSD * toString * truncated trunc * valueOf toJSON */ /* * Return a new Decimal whose value is the absolute value of this Decimal. * */ P.absoluteValue = P.abs = function () { var x = new this.constructor(this); if (x.s < 0) x.s = 1; return finalise(x); }; /* * Return a new Decimal whose value is the value of this Decimal rounded to a whole number in the * direction of positive Infinity. * */ P.ceil = function () { return finalise(new this.constructor(this), this.e + 1, 2); }; /* * Return a new Decimal whose value is the value of this Decimal clamped to the range * delineated by `min` and `max`. * * min {number|string|Decimal} * max {number|string|Decimal} * */ P.clampedTo = P.clamp = function (min, max) { var k, x = this, Ctor = x.constructor; min = new Ctor(min); max = new Ctor(max); if (!min.s || !max.s) return new Ctor(NaN); if (min.gt(max)) throw Error(invalidArgument + max); k = x.cmp(min); return k < 0 ? min : x.cmp(max) > 0 ? max : new Ctor(x); }; /* * Return * 1 if the value of this Decimal is greater than the value of `y`, * -1 if the value of this Decimal is less than the value of `y`, * 0 if they have the same value, * NaN if the value of either Decimal is NaN. * */ P.comparedTo = P.cmp = function (y) { var i, j, xdL, ydL, x = this, xd = x.d, yd = (y = new x.constructor(y)).d, xs = x.s, ys = y.s; // Either NaN or ±Infinity? if (!xd || !yd) { return !xs || !ys ? NaN : xs !== ys ? xs : xd === yd ? 0 : !xd ^ xs < 0 ? 1 : -1; } // Either zero? if (!xd[0] || !yd[0]) return xd[0] ? xs : yd[0] ? -ys : 0; // Signs differ? if (xs !== ys) return xs; // Compare exponents. if (x.e !== y.e) return x.e > y.e ^ xs < 0 ? 1 : -1; xdL = xd.length; ydL = yd.length; // Compare digit by digit. for (i = 0, j = xdL < ydL ? xdL : ydL; i < j; ++i) { if (xd[i] !== yd[i]) return xd[i] > yd[i] ^ xs < 0 ? 1 : -1; } // Compare lengths. return xdL === ydL ? 0 : xdL > ydL ^ xs < 0 ? 1 : -1; }; /* * Return a new Decimal whose value is the cosine of the value in radians of this Decimal. * * Domain: [-Infinity, Infinity] * Range: [-1, 1] * * cos(0) = 1 * cos(-0) = 1 * cos(Infinity) = NaN * cos(-Infinity) = NaN * cos(NaN) = NaN * */ P.cosine = P.cos = function () { var pr, rm, x = this, Ctor = x.constructor; if (!x.d) return new Ctor(NaN); // cos(0) = cos(-0) = 1 if (!x.d[0]) return new Ctor(1); pr = Ctor.precision; rm = Ctor.rounding; Ctor.precision = pr + Math.max(x.e, x.sd()) + LOG_BASE; Ctor.rounding = 1; x = cosine(Ctor, toLessThanHalfPi(Ctor, x)); Ctor.precision = pr; Ctor.rounding = rm; return finalise(quadrant == 2 || quadrant == 3 ? x.neg() : x, pr, rm, true); }; /* * * Return a new Decimal whose value is the cube root of the value of this Decimal, rounded to * `precision` significant digits using rounding mode `rounding`. * * cbrt(0) = 0 * cbrt(-0) = -0 * cbrt(1) = 1 * cbrt(-1) = -1 * cbrt(N) = N * cbrt(-I) = -I * cbrt(I) = I * * Math.cbrt(x) = (x < 0 ? -Math.pow(-x, 1/3) : Math.pow(x, 1/3)) * */ P.cubeRoot = P.cbrt = function () { var e, m, n, r, rep, s, sd, t, t3, t3plusx, x = this, Ctor = x.constructor; if (!x.isFinite() || x.isZero()) return new Ctor(x); external = false; // Initial estimate. s = x.s * mathpow(x.s * x, 1 / 3); // Math.cbrt underflow/overflow? // Pass x to Math.pow as integer, then adjust the exponent of the result. if (!s || Math.abs(s) == 1 / 0) { n = digitsToString(x.d); e = x.e; // Adjust n exponent so it is a multiple of 3 away from x exponent. if (s = (e - n.length + 1) % 3) n += (s == 1 || s == -2 ? '0' : '00'); s = mathpow(n, 1 / 3); // Rarely, e may be one less than the result exponent value. e = mathfloor((e + 1) / 3) - (e % 3 == (e < 0 ? -1 : 2)); if (s == 1 / 0) { n = '5e' + e; } else { n = s.toExponential(); n = n.slice(0, n.indexOf('e') + 1) + e; } r = new Ctor(n); r.s = x.s; } else { r = new Ctor(s.toString()); } sd = (e = Ctor.precision) + 3; // Halley's method. // TODO? Compare Newton's method. for (;;) { t = r; t3 = t.times(t).times(t); t3plusx = t3.plus(x); r = divide(t3plusx.plus(x).times(t), t3plusx.plus(t3), sd + 2, 1); // TODO? Replace with for-loop and checkRoundingDigits. if (digitsToString(t.d).slice(0, sd) === (n = digitsToString(r.d)).slice(0, sd)) { n = n.slice(sd - 3, sd + 1); // The 4th rounding digit may be in error by -1 so if the 4 rounding digits are 9999 or 4999 // , i.e. approaching a rounding boundary, continue the iteration. if (n == '9999' || !rep && n == '4999') { // On the first iteration only, check to see if rounding up gives the exact result as the // nines may infinitely repeat. if (!rep) { finalise(t, e + 1, 0); if (t.times(t).times(t).eq(x)) { r = t; break; } } sd += 4; rep = 1; } else { // If the rounding digits are null, 0{0,4} or 50{0,3}, check for an exact result. // If not, then there are further digits and m will be truthy. if (!+n || !+n.slice(1) && n.charAt(0) == '5') { // Truncate to the first rounding digit. finalise(r, e + 1, 1); m = !r.times(r).times(r).eq(x); } break; } } } external = true; return finalise(r, e, Ctor.rounding, m); }; /* * Return the number of decimal places of the value of this Decimal. * */ P.decimalPlaces = P.dp = function () { var w, d = this.d, n = NaN; if (d) { w = d.length - 1; n = (w - mathfloor(this.e / LOG_BASE)) * LOG_BASE; // Subtract the number of trailing zeros of the last word. w = d[w]; if (w) for (; w % 10 == 0; w /= 10) n--; if (n < 0) n = 0; } return n; }; /* * n / 0 = I * n / N = N * n / I = 0 * 0 / n = 0 * 0 / 0 = N * 0 / N = N * 0 / I = 0 * N / n = N * N / 0 = N * N / N = N * N / I = N * I / n = I * I / 0 = I * I / N = N * I / I = N * * Return a new Decimal whose value is the value of this Decimal divided by `y`, rounded to * `precision` significant digits using rounding mode `rounding`. * */ P.dividedBy = P.div = function (y) { return divide(this, new this.constructor(y)); }; /* * Return a new Decimal whose value is the integer part of dividing the value of this Decimal * by the value of `y`, rounded to `precision` significant digits using rounding mode `rounding`. * */ P.dividedToIntegerBy = P.divToInt = function (y) { var x = this, Ctor = x.constructor; return finalise(divide(x, new Ctor(y), 0, 1, 1), Ctor.precision, Ctor.rounding); }; /* * Return true if the value of this Decimal is equal to the value of `y`, otherwise return false. * */ P.equals = P.eq = function (y) { return this.cmp(y) === 0; }; /* * Return a new Decimal whose value is the value of this Decimal rounded to a whole number in the * direction of negative Infinity. * */ P.floor = function () { return finalise(new this.constructor(this), this.e + 1, 3); }; /* * Return true if the value of this Decimal is greater than the value of `y`, otherwise return * false. * */ P.greaterThan = P.gt = function (y) { return this.cmp(y) > 0; }; /* * Return true if the value of this Decimal is greater than or equal to the value of `y`, * otherwise return false. * */ P.greaterThanOrEqualTo = P.gte = function (y) { var k = this.cmp(y); return k == 1 || k === 0; }; /* * Return a new Decimal whose value is the hyperbolic cosine of the value in radians of this * Decimal. * * Domain: [-Infinity, Infinity] * Range: [1, Infinity] * * cosh(x) = 1 + x^2/2! + x^4/4! + x^6/6! + ... * * cosh(0) = 1 * cosh(-0) = 1 * cosh(Infinity) = Infinity * cosh(-Infinity) = Infinity * cosh(NaN) = NaN * * x time taken (ms) result * 1000 9 9.8503555700852349694e+433 * 10000 25 4.4034091128314607936e+4342 * 100000 171 1.4033316802130615897e+43429 * 1000000 3817 1.5166076984010437725e+434294 * 10000000 abandoned after 2 minute wait * * TODO? Compare performance of cosh(x) = 0.5 * (exp(x) + exp(-x)) * */ P.hyperbolicCosine = P.cosh = function () { var k, n, pr, rm, len, x = this, Ctor = x.constructor, one = new Ctor(1); if (!x.isFinite()) return new Ctor(x.s ? 1 / 0 : NaN); if (x.isZero()) return one; pr = Ctor.precision; rm = Ctor.rounding; Ctor.precision = pr + Math.max(x.e, x.sd()) + 4; Ctor.rounding = 1; len = x.d.length; // Argument reduction: cos(4x) = 1 - 8cos^2(x) + 8cos^4(x) + 1 // i.e. cos(x) = 1 - cos^2(x/4)(8 - 8cos^2(x/4)) // Estimate the optimum number of times to use the argument reduction. // TODO? Estimation reused from cosine() and may not be optimal here. if (len < 32) { k = Math.ceil(len / 3); n = (1 / tinyPow(4, k)).toString(); } else { k = 16; n = '2.3283064365386962890625e-10'; } x = taylorSeries(Ctor, 1, x.times(n), new Ctor(1), true); // Reverse argument reduction var cosh2_x, i = k, d8 = new Ctor(8); for (; i--;) { cosh2_x = x.times(x); x = one.minus(cosh2_x.times(d8.minus(cosh2_x.times(d8)))); } return finalise(x, Ctor.precision = pr, Ctor.rounding = rm, true); }; /* * Return a new Decimal whose value is the hyperbolic sine of the value in radians of this * Decimal. * * Domain: [-Infinity, Infinity] * Range: [-Infinity, Infinity] * * sinh(x) = x + x^3/3! + x^5/5! + x^7/7! + ... * * sinh(0) = 0 * sinh(-0) = -0 * sinh(Infinity) = Infinity * sinh(-Infinity) = -Infinity * sinh(NaN) = NaN * * x time taken (ms) * 10 2 ms * 100 5 ms * 1000 14 ms * 10000 82 ms * 100000 886 ms 1.4033316802130615897e+43429 * 200000 2613 ms * 300000 5407 ms * 400000 8824 ms * 500000 13026 ms 8.7080643612718084129e+217146 * 1000000 48543 ms * * TODO? Compare performance of sinh(x) = 0.5 * (exp(x) - exp(-x)) * */ P.hyperbolicSine = P.sinh = function () { var k, pr, rm, len, x = this, Ctor = x.constructor; if (!x.isFinite() || x.isZero()) return new Ctor(x); pr = Ctor.precision; rm = Ctor.rounding; Ctor.precision = pr + Math.max(x.e, x.sd()) + 4; Ctor.rounding = 1; len = x.d.length; if (len < 3) { x = taylorSeries(Ctor, 2, x, x, true); } else { // Alternative argument reduction: sinh(3x) = sinh(x)(3 + 4sinh^2(x)) // i.e. sinh(x) = sinh(x/3)(3 + 4sinh^2(x/3)) // 3 multiplications and 1 addition // Argument reduction: sinh(5x) = sinh(x)(5 + sinh^2(x)(20 + 16sinh^2(x))) // i.e. sinh(x) = sinh(x/5)(5 + sinh^2(x/5)(20 + 16sinh^2(x/5))) // 4 multiplications and 2 additions // Estimate the optimum number of times to use the argument reduction. k = 1.4 * Math.sqrt(len); k = k > 16 ? 16 : k | 0; x = x.times(1 / tinyPow(5, k)); x = taylorSeries(Ctor, 2, x, x, true); // Reverse argument reduction var sinh2_x, d5 = new Ctor(5), d16 = new Ctor(16), d20 = new Ctor(20); for (; k--;) { sinh2_x = x.times(x); x = x.times(d5.plus(sinh2_x.times(d16.times(sinh2_x).plus(d20)))); } } Ctor.precision = pr; Ctor.rounding = rm; return finalise(x, pr, rm, true); }; /* * Return a new Decimal whose value is the hyperbolic tangent of the value in radians of this * Decimal. * * Domain: [-Infinity, Infinity] * Range: [-1, 1] * * tanh(x) = sinh(x) / cosh(x) * * tanh(0) = 0 * tanh(-0) = -0 * tanh(Infinity) = 1 * tanh(-Infinity) = -1 * tanh(NaN) = NaN * */ P.hyperbolicTangent = P.tanh = function () { var pr, rm, x = this, Ctor = x.constructor; if (!x.isFinite()) return new Ctor(x.s); if (x.isZero()) return new Ctor(x); pr = Ctor.precision; rm = Ctor.rounding; Ctor.precision = pr + 7; Ctor.rounding = 1; return divide(x.sinh(), x.cosh(), Ctor.precision = pr, Ctor.rounding = rm); }; /* * Return a new Decimal whose value is the arccosine (inverse cosine) in radians of the value of * this Decimal. * * Domain: [-1, 1] * Range: [0, pi] * * acos(x) = pi/2 - asin(x) * * acos(0) = pi/2 * acos(-0) = pi/2 * acos(1) = 0 * acos(-1) = pi * acos(1/2) = pi/3 * acos(-1/2) = 2*pi/3 * acos(|x| > 1) = NaN * acos(NaN) = NaN * */ P.inverseCosine = P.acos = function () { var halfPi, x = this, Ctor = x.constructor, k = x.abs().cmp(1), pr = Ctor.precision, rm = Ctor.rounding; if (k !== -1) { return k === 0 // |x| is 1 ? x.isNeg() ? getPi(Ctor, pr, rm) : new Ctor(0) // |x| > 1 or x is NaN : new Ctor(NaN); } if (x.isZero()) return getPi(Ctor, pr + 4, rm).times(0.5); // TODO? Special case acos(0.5) = pi/3 and acos(-0.5) = 2*pi/3 Ctor.precision = pr + 6; Ctor.rounding = 1; x = x.asin(); halfPi = getPi(Ctor, pr + 4, rm).times(0.5); Ctor.precision = pr; Ctor.rounding = rm; return halfPi.minus(x); }; /* * Return a new Decimal whose value is the inverse of the hyperbolic cosine in radians of the * value of this Decimal. * * Domain: [1, Infinity] * Range: [0, Infinity] * * acosh(x) = ln(x + sqrt(x^2 - 1)) * * acosh(x < 1) = NaN * acosh(NaN) = NaN * acosh(Infinity) = Infinity * acosh(-Infinity) = NaN * acosh(0) = NaN * acosh(-0) = NaN * acosh(1) = 0 * acosh(-1) = NaN * */ P.inverseHyperbolicCosine = P.acosh = function () { var pr, rm, x = this, Ctor = x.constructor; if (x.lte(1)) return new Ctor(x.eq(1) ? 0 : NaN); if (!x.isFinite()) return new Ctor(x); pr = Ctor.precision; rm = Ctor.rounding; Ctor.precision = pr + Math.max(Math.abs(x.e), x.sd()) + 4; Ctor.rounding = 1; external = false; x = x.times(x).minus(1).sqrt().plus(x); external = true; Ctor.precision = pr; Ctor.rounding = rm; return x.ln(); }; /* * Return a new Decimal whose value is the inverse of the hyperbolic sine in radians of the value * of this Decimal. * * Domain: [-Infinity, Infinity] * Range: [-Infinity, Infinity] * * asinh(x) = ln(x + sqrt(x^2 + 1)) * * asinh(NaN) = NaN * asinh(Infinity) = Infinity * asinh(-Infinity) = -Infinity * asinh(0) = 0 * asinh(-0) = -0 * */ P.inverseHyperbolicSine = P.asinh = function () { var pr, rm, x = this, Ctor = x.constructor; if (!x.isFinite() || x.isZero()) return new Ctor(x); pr = Ctor.precision; rm = Ctor.rounding; Ctor.precision = pr + 2 * Math.max(Math.abs(x.e), x.sd()) + 6; Ctor.rounding = 1; external = false; x = x.times(x).plus(1).sqrt().plus(x); external = true; Ctor.precision = pr; Ctor.rounding = rm; return x.ln(); }; /* * Return a new Decimal whose value is the inverse of the hyperbolic tangent in radians of the * value of this Decimal. * * Domain: [-1, 1] * Range: [-Infinity, Infinity] * * atanh(x) = 0.5 * ln((1 + x) / (1 - x)) * * atanh(|x| > 1) = NaN * atanh(NaN) = NaN * atanh(Infinity) = NaN * atanh(-Infinity) = NaN * atanh(0) = 0 * atanh(-0) = -0 * atanh(1) = Infinity * atanh(-1) = -Infinity * */ P.inverseHyperbolicTangent = P.atanh = function () { var pr, rm, wpr, xsd, x = this, Ctor = x.constructor; if (!x.isFinite()) return new Ctor(NaN); if (x.e >= 0) return new Ctor(x.abs().eq(1) ? x.s / 0 : x.isZero() ? x : NaN); pr = Ctor.precision; rm = Ctor.rounding; xsd = x.sd(); if (Math.max(xsd, pr) < 2 * -x.e - 1) return finalise(new Ctor(x), pr, rm, true); Ctor.precision = wpr = xsd - x.e; x = divide(x.plus(1), new Ctor(1).minus(x), wpr + pr, 1); Ctor.precision = pr + 4; Ctor.rounding = 1; x = x.ln(); Ctor.precision = pr; Ctor.rounding = rm; return x.times(0.5); }; /* * Return a new Decimal whose value is the arcsine (inverse sine) in radians of the value of this * Decimal. * * Domain: [-Infinity, Infinity] * Range: [-pi/2, pi/2] * * asin(x) = 2*atan(x/(1 + sqrt(1 - x^2))) * * asin(0) = 0 * asin(-0) = -0 * asin(1/2) = pi/6 * asin(-1/2) = -pi/6 * asin(1) = pi/2 * asin(-1) = -pi/2 * asin(|x| > 1) = NaN * asin(NaN) = NaN * * TODO? Compare performance of Taylor series. * */ P.inverseSine = P.asin = function () { var halfPi, k, pr, rm, x = this, Ctor = x.constructor; if (x.isZero()) return new Ctor(x); k = x.abs().cmp(1); pr = Ctor.precision; rm = Ctor.rounding; if (k !== -1) { // |x| is 1 if (k === 0) { halfPi = getPi(Ctor, pr + 4, rm).times(0.5); halfPi.s = x.s; return halfPi; } // |x| > 1 or x is NaN return new Ctor(NaN); } // TODO? Special case asin(1/2) = pi/6 and asin(-1/2) = -pi/6 Ctor.precision = pr + 6; Ctor.rounding = 1; x = x.div(new Ctor(1).minus(x.times(x)).sqrt().plus(1)).atan(); Ctor.precision = pr; Ctor.rounding = rm; return x.times(2); }; /* * Return a new Decimal whose value is the arctangent (inverse tangent) in radians of the value * of this Decimal. * * Domain: [-Infinity, Infinity] * Range: [-pi/2, pi/2] * * atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ... * * atan(0) = 0 * atan(-0) = -0 * atan(1) = pi/4 * atan(-1) = -pi/4 * atan(Infinity) = pi/2 * atan(-Infinity) = -pi/2 * atan(NaN) = NaN * */ P.inverseTangent = P.atan = function () { var i, j, k, n, px, t, r, wpr, x2, x = this, Ctor = x.constructor, pr = Ctor.precision, rm = Ctor.rounding; if (!x.isFinite()) { if (!x.s) return new Ctor(NaN); if (pr + 4 <= PI_PRECISION) { r = getPi(Ctor, pr + 4, rm).times(0.5); r.s = x.s; return r; } } else if (x.isZero()) { return new Ctor(x); } else if (x.abs().eq(1) && pr + 4 <= PI_PRECISION) { r = getPi(Ctor, pr + 4, rm).times(0.25); r.s = x.s; return r; } Ctor.precision = wpr = pr + 10; Ctor.rounding = 1; // TODO? if (x >= 1 && pr <= PI_PRECISION) atan(x) = halfPi * x.s - atan(1 / x); // Argument reduction // Ensure |x| < 0.42 // atan(x) = 2 * atan(x / (1 + sqrt(1 + x^2))) k = Math.min(28, wpr / LOG_BASE + 2 | 0); for (i = k; i; --i) x = x.div(x.times(x).plus(1).sqrt().plus(1)); external = false; j = Math.ceil(wpr / LOG_BASE); n = 1; x2 = x.times(x); r = new Ctor(x); px = x; // atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ... for (; i !== -1;) { px = px.times(x2); t = r.minus(px.div(n += 2)); px = px.times(x2); r = t.plus(px.div(n += 2)); if (r.d[j] !== void 0) for (i = j; r.d[i] === t.d[i] && i--;); } if (k) r = r.times(2 << (k - 1)); external = true; return finalise(r, Ctor.precision = pr, Ctor.rounding = rm, true); }; /* * Return true if the value of this Decimal is a finite number, otherwise return false. * */ P.isFinite = function () { return !!this.d; }; /* * Return true if the value of this Decimal is an integer, otherwise return false. * */ P.isInteger = P.isInt = function () { return !!this.d && mathfloor(this.e / LOG_BASE) > this.d.length - 2; }; /* * Return true if the value of this Decimal is NaN, otherwise return false. * */ P.isNaN = function () { return !this.s; }; /* * Return true if the value of this Decimal is negative, otherwise return false. * */ P.isNegative = P.isNeg = function () { return this.s < 0; }; /* * Return true if the value of this Decimal is positive, otherwise return false. * */ P.isPositive = P.isPos = function () { return this.s > 0; }; /* * Return true if the value of this Decimal is 0 or -0, otherwise return false. * */ P.isZero = function () { return !!this.d && this.d[0] === 0; }; /* * Return true if the value of this Decimal is less than `y`, otherwise return false. * */ P.lessThan = P.lt = function (y) { return this.cmp(y) < 0; }; /* * Return true if the value of this Decimal is less than or equal to `y`, otherwise return false. * */ P.lessThanOrEqualTo = P.lte = function (y) { return this.cmp(y) < 1; }; /* * Return the logarithm of the value of this Decimal to the specified base, rounded to `precision` * significant digits using rounding mode `rounding`. * * If no base is specified, return log[10](arg). * * log[base](arg) = ln(arg) / ln(base) * * The result will always be correctly rounded if the base of the log is 10, and 'almost always' * otherwise: * * Depending on the rounding mode, the result may be incorrectly rounded if the first fifteen * rounding digits are [49]99999999999999 or [50]00000000000000. In that case, the maximum error * between the result and the correctly rounded result will be one ulp (unit in the last place). * * log[-b](a) = NaN * log[0](a) = NaN * log[1](a) = NaN * log[NaN](a) = NaN * log[Infinity](a) = NaN * log[b](0) = -Infinity * log[b](-0) = -Infinity * log[b](-a) = NaN * log[b](1) = 0 * log[b](Infinity) = Infinity * log[b](NaN) = NaN * * [base] {number|string|Decimal} The base of the logarithm. * */ P.logarithm = P.log = function (base) { var isBase10, d, denominator, k, inf, num, sd, r, arg = this, Ctor = arg.constructor, pr = Ctor.precision, rm = Ctor.rounding, guard = 5; // Default base is 10. if (base == null) { base = new Ctor(10); isBase10 = true; } else { base = new Ctor(base); d = base.d; // Return NaN if base is negative, or non-finite, or is 0 or 1. if (base.s < 0 || !d || !d[0] || base.eq(1)) return new Ctor(NaN); isBase10 = base.eq(10); } d = arg.d; // Is arg negative, non-finite, 0 or 1? if (arg.s < 0 || !d || !d[0] || arg.eq(1)) { return new Ctor(d && !d[0] ? -1 / 0 : arg.s != 1 ? NaN : d ? 0 : 1 / 0); } // The result will have a non-terminating decimal expansion if base is 10 and arg is not an // integer power of 10. if (isBase10) { if (d.length > 1) { inf = true; } else { for (k = d[0]; k % 10 === 0;) k /= 10; inf = k !== 1; } } external = false; sd = pr + guard; num = naturalLogarithm(arg, sd); denominator = isBase10 ? getLn10(Ctor, sd + 10) : naturalLogarithm(base, sd); // The result will have 5 rounding digits. r = divide(num, denominator, sd, 1); // If at a rounding boundary, i.e. the result's rounding digits are [49]9999 or [50]0000, // calculate 10 further digits. // // If the result is known to have an infinite decimal expansion, repeat this until it is clear // that the result is above or below the boundary. Otherwise, if after calculating the 10 // further digits, the last 14 are nines, round up and assume the result is exact. // Also assume the result is exact if the last 14 are zero. // // Example of a result that will be incorrectly rounded: // log[1048576](4503599627370502) = 2.60000000000000009610279511444746... // The above result correctly rounded using ROUND_CEIL to 1 decimal place should be 2.7, but it // will be given as 2.6 as there are 15 zeros immediately after the requested decimal place, so // the exact result would be assumed to be 2.6, which rounded using ROUND_CEIL to 1 decimal // place is still 2.6. if (checkRoundingDigits(r.d, k = pr, rm)) { do { sd += 10; num = naturalLogarithm(arg, sd); denominator = isBase10 ? getLn10(Ctor, sd + 10) : naturalLogarithm(base, sd); r = divide(num, denominator, sd, 1); if (!inf) { // Check for 14 nines from the 2nd rounding digit, as the first may be 4. if (+digitsToString(r.d).slice(k + 1, k + 15) + 1 == 1e14) { r = finalise(r, pr + 1, 0); } break; } } while (checkRoundingDigits(r.d, k += 10, rm)); } external = true; return finalise(r, pr, rm); }; /* * Return a new Decimal whose value is the maximum of the arguments and the value of this Decimal. * * arguments {number|string|Decimal} * P.max = function () { Array.prototype.push.call(arguments, this); return maxOrMin(this.constructor, arguments, 'lt'); }; */ /* * Return a new Decimal whose value is the minimum of the arguments and the value of this Decimal. * * arguments {number|string|Decimal} * P.min = function () { Array.prototype.push.call(arguments, this); return maxOrMin(this.constructor, arguments, 'gt'); }; */ /* * n - 0 = n * n - N = N * n - I = -I * 0 - n = -n * 0 - 0 = 0 * 0 - N = N * 0 - I = -I * N - n = N * N - 0 = N * N - N = N * N - I = N * I - n = I * I - 0 = I * I - N = N * I - I = N * * Return a new Decimal whose value is the value of this Decimal minus `y`, rounded to `precision` * significant digits using rounding mode `rounding`. * */ P.minus = P.sub = function (y) { var d, e, i, j, k, len, pr, rm, xd, xe, xLTy, yd, x = this, Ctor = x.constructor; y = new Ctor(y); // If either is not finite... if (!x.d || !y.d) { // Return NaN if either is NaN. if (!x.s || !y.s) y = new Ctor(NaN); // Return y negated if x is finite and y is ±Infinity. else if (x.d) y.s = -y.s; // Return x if y is finite and x is ±Infinity. // Return x if both are ±Infinity with different signs. // Return NaN if both are ±Infinity with the same sign. else y = new Ctor(y.d || x.s !== y.s ? x : NaN); return y; } // If signs differ... if (x.s != y.s) { y.s = -y.s; return x.plus(y); } xd = x.d; yd = y.d; pr = Ctor.precision; rm = Ctor.rounding; // If either is zero... if (!xd[0] || !yd[0]) { // Return y negated if x is zero and y is non-zero. if (yd[0]) y.s = -y.s; // Return x if y is zero and x is non-zero. else if (xd[0]) y = new Ctor(x); // Return zero if both are zero. // From IEEE 754 (2008) 6.3: 0 - 0 = -0 - -0 = -0 when rounding to -Infinity. else return new Ctor(rm === 3 ? -0 : 0); return external ? finalise(y, pr, rm) : y; } // x and y are finite, non-zero numbers with the same sign. // Calculate base 1e7 exponents. e = mathfloor(y.e / LOG_BASE); xe = mathfloor(x.e / LOG_BASE); xd = xd.slice(); k = xe - e; // If base 1e7 exponents differ... if (k) { xLTy = k < 0; if (xLTy) { d = xd; k = -k; len = yd.length; } else { d = yd; e = xe; len = xd.length; } // Numbers with massively different exponents would result in a very high number of // zeros needing to be prepended, but this can be avoided while still ensuring correct // rounding by limiting the number of zeros to `Math.ceil(pr / LOG_BASE) + 2`. i = Math.max(Math.ceil(pr / LOG_BASE), len) + 2; if (k > i) { k = i; d.length = 1; } // Prepend zeros to equalise exponents. d.reverse(); for (i = k; i--;) d.push(0); d.reverse(); // Base 1e7 exponents equal. } else { // Check digits to determine which is the bigger number. i = xd.length; len = yd.length; xLTy = i < len; if (xLTy) len = i; for (i = 0; i < len; i++) { if (xd[i] != yd[i]) { xLTy = xd[i] < yd[i]; break; } } k = 0; } if (xLTy) { d = xd; xd = yd; yd = d; y.s = -y.s; } len = xd.length; // Append zeros to `xd` if shorter. // Don't add zeros to `yd` if shorter as subtraction only needs to start at `yd` length. for (i = yd.length - len; i > 0; --i) xd[len++] = 0; // Subtract yd from xd. for (i = yd.length; i > k;) { if (xd[--i] < yd[i]) { for (j = i; j && xd[--j] === 0;) xd[j] = BASE - 1; --xd[j]; xd[i] += BASE; } xd[i] -= yd[i]; } // Remove trailing zeros. for (; xd[--len] === 0;) xd.pop(); // Remove leading zeros and adjust exponent accordingly. for (; xd[0] === 0; xd.shift()) --e; // Zero? if (!xd[0]) return new Ctor(rm === 3 ? -0 : 0); y.d = xd; y.e = getBase10Exponent(xd, e); return external ? finalise(y, pr, rm) : y; }; /* * n % 0 = N * n % N = N * n % I = n * 0 % n = 0 * -0 % n = -0 * 0 % 0 = N * 0 % N = N * 0 % I = 0 * N % n = N * N % 0 = N * N % N = N * N % I = N * I % n = N * I % 0 = N * I % N = N * I % I = N * * Return a new Decimal whose value is the value of this Decimal modulo `y`, rounded to * `precision` significant digits using rounding mode `rounding`. * * The result depends on the modulo mode. * */ P.modulo = P.mod = function (y) { var q, x = this, Ctor = x.constructor; y = new Ctor(y); // Return NaN if x is ±Infinity or NaN, or y is NaN or ±0. if (!x.d || !y.s || y.d && !y.d[0]) return new Ctor(NaN); // Return x if y is ±Infinity or x is ±0. if (!y.d || x.d && !x.d[0]) { return finalise(new Ctor(x), Ctor.precision, Ctor.rounding); } // Prevent rounding of intermediate calculations. external = false; if (Ctor.modulo == 9) { // Euclidian division: q = sign(y) * floor(x / abs(y)) // result = x - q * y where 0 <= result < abs(y) q = divide(x, y.abs(), 0, 3, 1); q.s *= y.s; } else { q = divide(x, y, 0, Ctor.modulo, 1); } q = q.times(y); external = true; return x.minus(q); }; /* * Return a new Decimal whose value is the natural exponential of the value of this Decimal, * i.e. the base e raised to the power the value of this Decimal, rounded to `precision` * significant digits using rounding mode `rounding`. * */ P.naturalExponential = P.exp = function () { return naturalExponential(this); }; /* * Return a new Decimal whose value is the natural logarithm of the value of this Decimal, * rounded to `precision` significant digits using rounding mode `rounding`. * */ P.naturalLogarithm = P.ln = function () { return naturalLogarithm(this); }; /* * Return a new Decimal whose value is the value of this Decimal negated, i.e. as if multiplied by * -1. * */ P.negated = P.neg = function () { var x = new this.constructor(this); x.s = -x.s; return finalise(x); }; /* * n + 0 = n * n + N = N * n + I = I * 0 + n = n * 0 + 0 = 0 * 0 + N = N * 0 + I = I * N + n = N * N + 0 = N * N + N = N * N + I = N * I + n = I * I + 0 = I * I + N = N * I + I = I * * Return a new Decimal whose value is the value of this Decimal plus `y`, rounded to `precision` * significant digits using rounding mode `rounding`. * */ P.plus = P.add = function (y) { var carry, d, e, i, k, len, pr, rm, xd, yd, x = this, Ctor = x.constructor; y = new Ctor(y); // If either is not finite... if (!x.d || !y.d) { // Return NaN if either is NaN. if (!x.s || !y.s) y = new Ctor(NaN); // Return x if y is finite and x is ±Infinity. // Return x if both are ±Infinity with the same sign. // Return NaN if both are ±Infinity with different signs. // Return y if x is finite and y is ±Infinity. else if (!x.d) y = new Ctor(y.d || x.s === y.s ? x : NaN); return y; } // If signs differ... if (x.s != y.s) { y.s = -y.s; return x.minus(y); } xd = x.d; yd = y.d; pr = Ctor.precision; rm = Ctor.rounding; // If either is zero... if (!xd[0] || !yd[0]) { // Return x if y is zero. // Return y if y is non-zero. if (!yd[0]) y = new Ctor(x); return external ? finalise(y, pr, rm) : y; } // x and y are finite, non-zero numbers with the same sign. // Calculate base 1e7 exponents. k = mathfloor(x.e / LOG_BASE); e = mathfloor(y.e / LOG_BASE); xd = xd.slice(); i = k - e; // If base 1e7 exponents differ... if (i) { if (i < 0) { d = xd; i = -i; len = yd.length; } else { d = yd; e = k; len = xd.length; } // Limit number of zeros prepended to max(ceil(pr / LOG_BASE), len) + 1. k = Math.ceil(pr / LOG_BASE); len = k > len ? k + 1 : len + 1; if (i > len) { i = len; d.length = 1; } // Prepend zeros to equalise exponents. Note: Faster to use reverse then do unshifts. d.reverse(); for (; i--;) d.push(0); d.reverse(); } len = xd.length; i = yd.length; // If yd is longer than xd, swap xd and yd so xd points to the longer array. if (len - i < 0) { i = len; d = yd; yd = xd; xd = d; } // Only start adding at yd.length - 1 as the further digits of xd can be left as they are. for (carry = 0; i;) { carry = (xd[--i] = xd[i] + yd[i] + carry) / BASE | 0; xd[i] %= BASE; } if (carry) { xd.unshift(carry); ++e; } // Remove trailing zeros. // No need to check for zero, as +x + +y != 0 && -x + -y != 0 for (len = xd.length; xd[--len] == 0;) xd.pop(); y.d = xd; y.e = getBase10Exponent(xd, e); return external ? finalise(y, pr, rm) : y; }; /* * Return the number of significant digits of the value of this Decimal. * * [z] {boolean|number} Whether to count integer-part trailing zeros: true, false, 1 or 0. * */ P.precision = P.sd = function (z) { var k, x = this; if (z !== void 0 && z !== !!z && z !== 1 && z !== 0) throw Error(invalidArgument + z); if (x.d) { k = getPrecision(x.d); if (z && x.e + 1 > k) k = x.e + 1; } else { k = NaN; } return k; }; /* * Return a new Decimal whose value is the value of this Decimal rounded to a whole number using * rounding mode `rounding`. * */ P.round = function () { var x = this, Ctor = x.constructor; return finalise(new Ctor(x), x.e + 1, Ctor.rounding); }; /* * Return a new Decimal whose value is the sine of the value in radians of this Decimal. * * Domain: [-Infinity, Infinity] * Range: [-1, 1] * * sin(x) = x - x^3/3! + x^5/5! - ... * * sin(0) = 0 * sin(-0) = -0 * sin(Infinity) = NaN * sin(-Infinity) = NaN * sin(NaN) = NaN * */ P.sine = P.sin = function () { var pr, rm, x = this, Ctor = x.constructor; if (!x.isFinite()) return new Ctor(NaN); if (x.isZero()) return new Ctor(x); pr = Ctor.precision; rm = Ctor.rounding; Ctor.precision = pr + Math.max(x.e, x.sd()) + LOG_BASE; Ctor.rounding = 1; x = sine(Ctor, toLessThanHalfPi(Ctor, x)); Ctor.precision = pr; Ctor.rounding = rm; return finalise(quadrant > 2 ? x.neg() : x, pr, rm, true); }; /* * Return a new Decimal whose value is the square root of this Decimal, rounded to `precision` * significant digits using rounding mode `rounding`. * * sqrt(-n) = N * sqrt(N) = N * sqrt(-I) = N * sqrt(I) = I * sqrt(0) = 0 * sqrt(-0) = -0 * */ P.squareRoot = P.sqrt = function () { var m, n, sd, r, rep, t, x = this, d = x.d, e = x.e, s = x.s, Ctor = x.constructor; // Negative/NaN/Infinity/zero? if (s !== 1 || !d || !d[0]) { return new Ctor(!s || s < 0 && (!d || d[0]) ? NaN : d ? x : 1 / 0); } external = false; // Initial estimate. s = Math.sqrt(+x); // Math.sqrt underflow/overflow? // Pass x to Math.sqrt as integer, then adjust the exponent of the result. if (s == 0 || s == 1 / 0) { n = digitsToString(d); if ((n.length + e) % 2 == 0) n += '0'; s = Math.sqrt(n); e = mathfloor((e + 1) / 2) - (e < 0 || e % 2); if (s == 1 / 0) { n = '5e' + e; } else { n = s.toExponential(); n = n.slice(0, n.indexOf('e') + 1) + e; } r = new Ctor(n); } else { r = new Ctor(s.toString()); } sd = (e = Ctor.precision) + 3; // Newton-Raphson iteration. for (;;) { t = r; r = t.plus(divide(x, t, sd + 2, 1)).times(0.5); // TODO? Replace with for-loop and checkRoundingDigits. if (digitsToString(t.d).slice(0, sd) === (n = digitsToString(r.d)).slice(0, sd)) { n = n.slice(sd - 3, sd + 1); // The 4th rounding digit may be in error by -1 so if the 4 rounding digits are 9999 or // 4999, i.e. approaching a rounding boundary, continue the iteration. if (n == '9999' || !rep && n == '4999') { // On the first iteration only, check to see if rounding up gives the exact result as the // nines may infinitely repeat. if (!rep) { finalise(t, e + 1, 0); if (t.times(t).eq(x)) { r = t; break; } } sd += 4; rep = 1; } else { // If the rounding digits are null, 0{0,4} or 50{0,3}, check for an exact result. // If not, then there are further digits and m will be truthy. if (!+n || !+n.slice(1) && n.charAt(0) == '5') { // Truncate to the first rounding digit. finalise(r, e + 1, 1); m = !r.times(r).eq(x); } break; } } } external = true; return finalise(r, e, Ctor.rounding, m); }; /* * Return a new Decimal whose value is the tangent of the value in radians of this Decimal. * * Domain: [-Infinity, Infinity] * Range: [-Infinity, Infinity] * * tan(0) = 0 * tan(-0) = -0 * tan(Infinity) = NaN * tan(-Infinity) = NaN * tan(NaN) = NaN * */ P.tangent = P.tan = function () { var pr, rm, x = this, Ctor = x.constructor; if (!x.isFinite()) return new Ctor(NaN); if (x.isZero()) return new Ctor(x); pr = Ctor.precision; rm = Ctor.rounding; Ctor.precision = pr + 10; Ctor.rounding = 1; x = x.sin(); x.s = 1; x = divide(x, new Ctor(1).minus(x.times(x)).sqrt(), pr + 10, 0); Ctor.precision = pr; Ctor.rounding = rm; return finalise(quadrant == 2 || quadrant == 4 ? x.neg() : x, pr, rm, true); }; /* * n * 0 = 0 * n * N = N * n * I = I * 0 * n = 0 * 0 * 0 = 0 * 0 * N = N * 0 * I = N * N * n = N * N * 0 = N * N * N = N * N * I = N * I * n = I * I * 0 = N * I * N = N * I * I = I * * Return a new Decimal whose value is this Decimal times `y`, rounded to `precision` significant * digits using rounding mode `rounding`. * */ P.times = P.mul = function (y) { var carry, e, i, k, r, rL, t, xdL, ydL, x = this, Ctor = x.constructor, xd = x.d, yd = (y = new Ctor(y)).d; y.s *= x.s; // If either is NaN, ±Infinity or ±0... if (!xd || !xd[0] || !yd || !yd[0]) { return new Ctor(!y.s || xd && !xd[0] && !yd || yd && !yd[0] && !xd // Return NaN if either is NaN. // Return NaN if x is ±0 and y is ±Infinity, or y is ±0 and x is ±Infinity. ? NaN // Return ±Infinity if either is ±Infinity. // Return ±0 if either is ±0. : !xd || !yd ? y.s / 0 : y.s * 0); } e = mathfloor(x.e / LOG_BASE) + mathfloor(y.e / LOG_BASE); xdL = xd.length; ydL = yd.length; // Ensure xd points to the longer array. if (xdL < ydL) { r = xd; xd = yd; yd = r; rL = xdL; xdL = ydL; ydL = rL; } // Initialise the result array with zeros. r = []; rL = xdL + ydL; for (i = rL; i--;) r.push(0); // Multiply! for (i = ydL; --i >= 0;) { carry = 0; for (k = xdL + i; k > i;) { t = r[k] + yd[i] * xd[k - i - 1] + carry; r[k--] = t % BASE | 0; carry = t / BASE | 0; } r[k] = (r[k] + carry) % BASE | 0; } // Remove trailing zeros. for (; !r[--rL];) r.pop(); if (carry) ++e;