UNPKG

@simpleapps-com/augur-api

Version:

TypeScript client library for Augur microservices API endpoints

84 lines 4.27 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.createOpenSearchResource = createOpenSearchResource; exports.createOpenSearchDataResource = createOpenSearchDataResource; const zod_1 = require("zod"); const schemas_1 = require("../../../core/schemas"); const schemas_2 = require("../schemas"); // Create response schemas using BaseResponseSchema directly const UnknownResponseSchema = (0, schemas_1.BaseResponseSchema)(zod_1.z.unknown()); /** * Creates the openSearch resource methods * OpenAPI Path: /open-search → openSearch.* * @description Advanced search embedding and indexing functionality for agricultural content discovery */ function createOpenSearchResource(executeRequest) { return { /** * Text embedding operations */ embedding: { /** * Generate text embedding for search optimization * @description Creates vector embeddings for agricultural content to enable semantic search and content discovery * @fullPath api.agrSite.openSearch.embedding.get * @service agr-site * @domain search-optimization * @dataMethod openSearchData.embedding.get - returns only the embedding data without metadata * @discoverable true * @searchTerms ["embedding", "vector search", "semantic search", "text embedding", "opensearch", "search optimization", "content indexing"] * @relatedEndpoints ["api.agrSite.fyxerTranscript.create", "api.agrSite.fyxerTranscript.update", "api.agrSite.settings.list"] * @commonPatterns ["Generate content embeddings", "Optimize search index", "Create semantic vectors", "Agricultural content analysis"] * @workflow ["search-optimization", "content-indexing", "ai-processing", "agricultural-content-analysis"] * @prerequisites ["Valid authentication token", "Search integration permissions", "Valid text content"] * @nextSteps ["Index embeddings in search system", "Use embeddings for content discovery"] * @businessRules ["Optimizes embeddings for agricultural content", "Rate limited for large-scale operations", "Content filtered for relevance"] * @functionalArea "site-content-and-ai-processing" * @caching "Embeddings cached for 24 hours, invalidate on content changes" * @performance "AI processing may take 2-5 seconds depending on content length" * @param params Text content and embedding configuration parameters * @returns Promise<BaseResponse<unknown>> Complete response with generated embedding vectors and metadata * @example * ```typescript * const embedding = await client.openSearch.embedding.get({ * text: 'Sustainable farming practices for crop rotation and soil health', * model: 'agricultural-optimized', * dimensions: 384 * }); * * // Get just the embedding data * const embeddingData = await client.openSearchData.embedding.get({ * text: 'Organic farming techniques for sustainable agriculture' * }); * ``` */ get: async (params) => { return executeRequest({ method: 'GET', path: '/open-search/embedding', paramsSchema: schemas_2.OpenSearchEmbeddingParamsSchema, responseSchema: UnknownResponseSchema, }, params); }, }, }; } /** * Creates the openSearchData resource methods (data-only versions) */ function createOpenSearchDataResource(openSearch) { return { embedding: { /** * Get embedding data without response metadata * @param params Text content and embedding configuration parameters * @returns Promise<unknown> Embedding data directly */ get: async (params) => { const response = await openSearch.embedding.get(params); return response.data; }, }, }; } //# sourceMappingURL=open-search.js.map