@simonecoelhosfo/optimizely-mcp-server
Version:
Optimizely MCP Server for AI assistants with integrated CLI tools
84 lines • 1.98 kB
TypeScript
export declare class LogUpdateProgressReporter {
private projects;
private totalSteps;
private completedSteps;
private spinnerFrames;
private spinnerIndex;
private spinnerInterval;
private startTime;
private renderInterval;
private lastOutput;
private resizeTimeout;
private isResizing;
private lastRenderTime;
private readonly RENDER_THROTTLE_MS;
private readonly progressEventHandler;
private previousLineCount;
private outputCache;
constructor();
/**
* Start sync operation
*/
startSync(operation: string, options: any): void;
/**
* Set total steps
*/
setTotalSteps(projectCount: number, entitiesPerProject: number, totalSteps?: number): void;
/**
* Handle progress events
*/
private handleProgressEvent;
/**
* Start a new project section
*/
private startProject;
/**
* Start tracking an entity
*/
private startEntity;
/**
* Update entity progress
*/
private updateEntity;
/**
* Complete an entity
*/
private completeEntity;
/**
* Start render loop with proven anti-flicker technique
*/
private startRenderLoop;
/**
* Request a render with throttling
*/
private requestRender;
/**
* Fit content to terminal height to prevent scrolling flicker
*/
private fitToTerminalHeight;
/**
* Render with smart change detection to prevent unnecessary updates
*/
private render;
/**
* Complete sync operation
*/
completeSync(result: any): void;
/**
* Report error
*/
error(error: Error): void;
/**
* Stop render loop
*/
private stopRenderLoop;
/**
* Clean up
*/
dispose(): void;
/**
* Legacy updateProgress method (no-op in log-update mode)
*/
updateProgress(progress: any): void;
}
//# sourceMappingURL=LogUpdateProgressReporter.d.ts.map