UNPKG

@severo_tests/hyparquet

Version:

Parquet file parser for JavaScript

254 lines (238 loc) 8.92 kB
import { parquetMetadataAsync, parquetSchema } from './metadata.js' import { parquetReadColumn, parquetReadObjects } from './read.js' import { equals } from './utils.js' /** * Wraps parquetRead with filter and orderBy support. * This is a parquet-aware query engine that can read a subset of rows and columns. * Accepts optional filter object to filter the results and orderBy column name to sort the results. * Note that using orderBy may SIGNIFICANTLY increase the query time. * * @param {ParquetReadOptions & { filter?: ParquetQueryFilter, orderBy?: string }} options * @returns {Promise<Record<string, any>[]>} resolves when all requested rows and columns are parsed */ export async function parquetQuery(options) { if (!options.file || !(options.file.byteLength >= 0)) { throw new Error('parquet expected AsyncBuffer') } options.metadata ??= await parquetMetadataAsync(options.file) const { metadata, rowStart = 0, columns, orderBy, filter } = options if (rowStart < 0) throw new Error('parquet rowStart must be positive') const rowEnd = options.rowEnd ?? Number(metadata.num_rows) // Collect columns needed for the query const filterColumns = columnsNeededForFilter(filter) const allColumns = parquetSchema(options.metadata).children.map(c => c.element.name) // Check if all filter columns exist const missingColumns = filterColumns.filter(column => !allColumns.includes(column)) if (missingColumns.length) { throw new Error(`parquet filter columns not found: ${missingColumns.join(', ')}`) } if (orderBy && !allColumns.includes(orderBy)) { throw new Error(`parquet orderBy column not found: ${orderBy}`) } const relevantColumns = columns ? allColumns.filter(column => columns.includes(column) || filterColumns.includes(column) || column === orderBy ) : undefined // Is the output a subset of the relevant columns? const requiresProjection = columns && relevantColumns ? columns.length < relevantColumns.length : false if (filter && !orderBy && rowEnd < metadata.num_rows) { // iterate through row groups and filter until we have enough rows const filteredRows = new Array() let groupStart = 0 for (const group of metadata.row_groups) { const groupEnd = groupStart + Number(group.num_rows) // TODO: if expected > group size, start fetching next groups const groupData = await parquetReadObjects({ ...options, rowFormat: 'object', rowStart: groupStart, rowEnd: groupEnd, columns: relevantColumns, }) for (const row of groupData) { if (matchQuery(row, filter)) { if (requiresProjection && relevantColumns) { for (const column of relevantColumns) { if (columns && !columns.includes(column)) { delete row[column] // remove columns not in the projection } } } filteredRows.push(row) } } if (filteredRows.length >= rowEnd) break groupStart = groupEnd } return filteredRows.slice(rowStart, rowEnd) } else if (filter) { // read all rows, sort, and filter const results = await parquetReadObjects({ ...options, rowFormat: 'object', rowStart: undefined, rowEnd: undefined, columns: relevantColumns, }) if (orderBy) results.sort((a, b) => compare(a[orderBy], b[orderBy])) const filteredRows = new Array() for (const row of results) { if (matchQuery(row, filter)) { if (requiresProjection && relevantColumns) { for (const column of relevantColumns) { if (columns && !columns.includes(column)) { delete row[column] // remove columns not in the projection } } } filteredRows.push(row) } } return filteredRows.slice(rowStart, rowEnd) } else if (typeof orderBy === 'string') { // sorted but unfiltered: fetch orderBy column first const orderColumn = await parquetReadColumn({ ...options, rowStart: undefined, rowEnd: undefined, columns: [orderBy] }) // compute row groups to fetch const sortedIndices = Array.from(orderColumn, (_, index) => index) .sort((a, b) => compare(orderColumn[a], orderColumn[b])) .slice(rowStart, rowEnd) const sparseData = await parquetReadRows({ ...options, rows: sortedIndices }) const data = sortedIndices.map(index => sparseData[index]) return data } else { return await parquetReadObjects(options) } } /** * Reads a list rows from a parquet file, reading only the row groups that contain the rows. * Returns a sparse array of rows. * @import {ParquetQueryFilter, ParquetReadOptions} from '../src/types.d.ts' * @param {ParquetReadOptions & { rows: number[] }} options * @returns {Promise<Record<string, any>[]>} */ async function parquetReadRows(options) { const { file, rows } = options options.metadata ||= await parquetMetadataAsync(file) const { row_groups: rowGroups } = options.metadata // Compute row groups to fetch const groupIncluded = Array(rowGroups.length).fill(false) let groupStart = 0 const groupEnds = rowGroups.map(group => groupStart += Number(group.num_rows)) for (const index of rows) { const groupIndex = groupEnds.findIndex(end => index < end) groupIncluded[groupIndex] = true } // Compute row ranges to fetch const rowRanges = [] let rangeStart groupStart = 0 for (let i = 0; i < groupIncluded.length; i++) { const groupEnd = groupStart + Number(rowGroups[i].num_rows) if (groupIncluded[i]) { if (rangeStart === undefined) { rangeStart = groupStart } } else { if (rangeStart !== undefined) { rowRanges.push([rangeStart, groupEnd]) rangeStart = undefined } } groupStart = groupEnd } if (rangeStart !== undefined) { rowRanges.push([rangeStart, groupStart]) } // Fetch by row group and map to rows const sparseData = new Array(Number(options.metadata.num_rows)) for (const [rangeStart, rangeEnd] of rowRanges) { // TODO: fetch in parallel const groupData = await parquetReadObjects({ ...options, rowStart: rangeStart, rowEnd: rangeEnd }) for (let i = rangeStart; i < rangeEnd; i++) { sparseData[i] = groupData[i - rangeStart] sparseData[i].__index__ = i } } return sparseData } /** * @param {any} a * @param {any} b * @returns {number} */ function compare(a, b) { if (a < b) return -1 if (a > b) return 1 return 0 // TODO: null handling } /** * Match a record against a query filter * * @param {any} record * @param {ParquetQueryFilter} query * @returns {boolean} * @example matchQuery({ id: 1 }, { id: {$gte: 1} }) // true */ export function matchQuery(record, query = {}) { if ('$and' in query && Array.isArray(query.$and)) { return query.$and.every(subQuery => matchQuery(record, subQuery)) } if ('$or' in query && Array.isArray(query.$or)) { return query.$or.some(subQuery => matchQuery(record, subQuery)) } if ('$nor' in query && Array.isArray(query.$nor)) { return !query.$nor.some(subQuery => matchQuery(record, subQuery)) } return Object.entries(query).every(([field, condition]) => { const value = record[field] // implicit $eq for non-object conditions if (typeof condition !== 'object' || condition === null || Array.isArray(condition)) { return equals(value, condition) } return Object.entries(condition || {}).every(([operator, target]) => { switch (operator) { case '$gt': return value > target case '$gte': return value >= target case '$lt': return value < target case '$lte': return value <= target case '$eq': return equals(value, target) case '$ne': return !equals(value, target) case '$in': return Array.isArray(target) && target.includes(value) case '$nin': return Array.isArray(target) && !target.includes(value) case '$not': return !matchQuery({ [field]: value }, { [field]: target }) default: return true } }) }) } /** * Returns an array of column names that are needed to evaluate the mongo filter. * * @param {ParquetQueryFilter} [filter] * @returns {string[]} */ function columnsNeededForFilter(filter) { if (!filter) return [] /** @type {string[]} */ const columns = [] if ('$and' in filter && Array.isArray(filter.$and)) { columns.push(...filter.$and.flatMap(columnsNeededForFilter)) } else if ('$or' in filter && Array.isArray(filter.$or)) { columns.push(...filter.$or.flatMap(columnsNeededForFilter)) } else if ('$nor' in filter && Array.isArray(filter.$nor)) { columns.push(...filter.$nor.flatMap(columnsNeededForFilter)) } else { // Column filters columns.push(...Object.keys(filter)) } return columns }