UNPKG

@settlemint/solidity-supplychain

Version:

Smart contract set to build a supplychain usecase in SettleMint

1 lines 1.4 MB
{"id":"cb73c28482319b340bc61d45e32b173b","_format":"hh-sol-build-info-1","solcVersion":"0.8.27","solcLongVersion":"0.8.27+commit.40a35a09","input":{"language":"Solidity","sources":{"@openzeppelin/contracts/access/Ownable.sol":{"content":"// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)\n\npragma solidity ^0.8.20;\n\nimport {Context} from \"../utils/Context.sol\";\n\n/**\n * @dev Contract module which provides a basic access control mechanism, where\n * there is an account (an owner) that can be granted exclusive access to\n * specific functions.\n *\n * The initial owner is set to the address provided by the deployer. This can\n * later be changed with {transferOwnership}.\n *\n * This module is used through inheritance. It will make available the modifier\n * `onlyOwner`, which can be applied to your functions to restrict their use to\n * the owner.\n */\nabstract contract Ownable is Context {\n address private _owner;\n\n /**\n * @dev The caller account is not authorized to perform an operation.\n */\n error OwnableUnauthorizedAccount(address account);\n\n /**\n * @dev The owner is not a valid owner account. (eg. `address(0)`)\n */\n error OwnableInvalidOwner(address owner);\n\n event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);\n\n /**\n * @dev Initializes the contract setting the address provided by the deployer as the initial owner.\n */\n constructor(address initialOwner) {\n if (initialOwner == address(0)) {\n revert OwnableInvalidOwner(address(0));\n }\n _transferOwnership(initialOwner);\n }\n\n /**\n * @dev Throws if called by any account other than the owner.\n */\n modifier onlyOwner() {\n _checkOwner();\n _;\n }\n\n /**\n * @dev Returns the address of the current owner.\n */\n function owner() public view virtual returns (address) {\n return _owner;\n }\n\n /**\n * @dev Throws if the sender is not the owner.\n */\n function _checkOwner() internal view virtual {\n if (owner() != _msgSender()) {\n revert OwnableUnauthorizedAccount(_msgSender());\n }\n }\n\n /**\n * @dev Leaves the contract without owner. It will not be possible to call\n * `onlyOwner` functions. Can only be called by the current owner.\n *\n * NOTE: Renouncing ownership will leave the contract without an owner,\n * thereby disabling any functionality that is only available to the owner.\n */\n function renounceOwnership() public virtual onlyOwner {\n _transferOwnership(address(0));\n }\n\n /**\n * @dev Transfers ownership of the contract to a new account (`newOwner`).\n * Can only be called by the current owner.\n */\n function transferOwnership(address newOwner) public virtual onlyOwner {\n if (newOwner == address(0)) {\n revert OwnableInvalidOwner(address(0));\n }\n _transferOwnership(newOwner);\n }\n\n /**\n * @dev Transfers ownership of the contract to a new account (`newOwner`).\n * Internal function without access restriction.\n */\n function _transferOwnership(address newOwner) internal virtual {\n address oldOwner = _owner;\n _owner = newOwner;\n emit OwnershipTransferred(oldOwner, newOwner);\n }\n}\n"},"@openzeppelin/contracts/utils/Context.sol":{"content":"// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)\n\npragma solidity ^0.8.20;\n\n/**\n * @dev Provides information about the current execution context, including the\n * sender of the transaction and its data. While these are generally available\n * via msg.sender and msg.data, they should not be accessed in such a direct\n * manner, since when dealing with meta-transactions the account sending and\n * paying for execution may not be the actual sender (as far as an application\n * is concerned).\n *\n * This contract is only required for intermediate, library-like contracts.\n */\nabstract contract Context {\n function _msgSender() internal view virtual returns (address) {\n return msg.sender;\n }\n\n function _msgData() internal view virtual returns (bytes calldata) {\n return msg.data;\n }\n\n function _contextSuffixLength() internal view virtual returns (uint256) {\n return 0;\n }\n}\n"},"@openzeppelin/contracts/utils/math/Math.sol":{"content":"// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)\n\npragma solidity ^0.8.20;\n\nimport {Panic} from \"../Panic.sol\";\nimport {SafeCast} from \"./SafeCast.sol\";\n\n/**\n * @dev Standard math utilities missing in the Solidity language.\n */\nlibrary Math {\n enum Rounding {\n Floor, // Toward negative infinity\n Ceil, // Toward positive infinity\n Trunc, // Toward zero\n Expand // Away from zero\n }\n\n /**\n * @dev Return the 512-bit addition of two uint256.\n *\n * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.\n */\n function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {\n assembly (\"memory-safe\") {\n low := add(a, b)\n high := lt(low, a)\n }\n }\n\n /**\n * @dev Return the 512-bit multiplication of two uint256.\n *\n * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.\n */\n function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {\n // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use\n // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256\n // variables such that product = high * 2²⁵⁶ + low.\n assembly (\"memory-safe\") {\n let mm := mulmod(a, b, not(0))\n low := mul(a, b)\n high := sub(sub(mm, low), lt(mm, low))\n }\n }\n\n /**\n * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).\n */\n function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {\n unchecked {\n uint256 c = a + b;\n success = c >= a;\n result = c * SafeCast.toUint(success);\n }\n }\n\n /**\n * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).\n */\n function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {\n unchecked {\n uint256 c = a - b;\n success = c <= a;\n result = c * SafeCast.toUint(success);\n }\n }\n\n /**\n * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).\n */\n function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {\n unchecked {\n uint256 c = a * b;\n assembly (\"memory-safe\") {\n // Only true when the multiplication doesn't overflow\n // (c / a == b) || (a == 0)\n success := or(eq(div(c, a), b), iszero(a))\n }\n // equivalent to: success ? c : 0\n result = c * SafeCast.toUint(success);\n }\n }\n\n /**\n * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).\n */\n function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {\n unchecked {\n success = b > 0;\n assembly (\"memory-safe\") {\n // The `DIV` opcode returns zero when the denominator is 0.\n result := div(a, b)\n }\n }\n }\n\n /**\n * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).\n */\n function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {\n unchecked {\n success = b > 0;\n assembly (\"memory-safe\") {\n // The `MOD` opcode returns zero when the denominator is 0.\n result := mod(a, b)\n }\n }\n }\n\n /**\n * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.\n */\n function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {\n (bool success, uint256 result) = tryAdd(a, b);\n return ternary(success, result, type(uint256).max);\n }\n\n /**\n * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.\n */\n function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {\n (, uint256 result) = trySub(a, b);\n return result;\n }\n\n /**\n * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.\n */\n function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {\n (bool success, uint256 result) = tryMul(a, b);\n return ternary(success, result, type(uint256).max);\n }\n\n /**\n * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.\n *\n * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.\n * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute\n * one branch when needed, making this function more expensive.\n */\n function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {\n unchecked {\n // branchless ternary works because:\n // b ^ (a ^ b) == a\n // b ^ 0 == b\n return b ^ ((a ^ b) * SafeCast.toUint(condition));\n }\n }\n\n /**\n * @dev Returns the largest of two numbers.\n */\n function max(uint256 a, uint256 b) internal pure returns (uint256) {\n return ternary(a > b, a, b);\n }\n\n /**\n * @dev Returns the smallest of two numbers.\n */\n function min(uint256 a, uint256 b) internal pure returns (uint256) {\n return ternary(a < b, a, b);\n }\n\n /**\n * @dev Returns the average of two numbers. The result is rounded towards\n * zero.\n */\n function average(uint256 a, uint256 b) internal pure returns (uint256) {\n // (a + b) / 2 can overflow.\n return (a & b) + (a ^ b) / 2;\n }\n\n /**\n * @dev Returns the ceiling of the division of two numbers.\n *\n * This differs from standard division with `/` in that it rounds towards infinity instead\n * of rounding towards zero.\n */\n function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {\n if (b == 0) {\n // Guarantee the same behavior as in a regular Solidity division.\n Panic.panic(Panic.DIVISION_BY_ZERO);\n }\n\n // The following calculation ensures accurate ceiling division without overflow.\n // Since a is non-zero, (a - 1) / b will not overflow.\n // The largest possible result occurs when (a - 1) / b is type(uint256).max,\n // but the largest value we can obtain is type(uint256).max - 1, which happens\n // when a = type(uint256).max and b = 1.\n unchecked {\n return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);\n }\n }\n\n /**\n * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or\n * denominator == 0.\n *\n * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by\n * Uniswap Labs also under MIT license.\n */\n function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {\n unchecked {\n (uint256 high, uint256 low) = mul512(x, y);\n\n // Handle non-overflow cases, 256 by 256 division.\n if (high == 0) {\n // Solidity will revert if denominator == 0, unlike the div opcode on its own.\n // The surrounding unchecked block does not change this fact.\n // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.\n return low / denominator;\n }\n\n // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.\n if (denominator <= high) {\n Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));\n }\n\n ///////////////////////////////////////////////\n // 512 by 256 division.\n ///////////////////////////////////////////////\n\n // Make division exact by subtracting the remainder from [high low].\n uint256 remainder;\n assembly (\"memory-safe\") {\n // Compute remainder using mulmod.\n remainder := mulmod(x, y, denominator)\n\n // Subtract 256 bit number from 512 bit number.\n high := sub(high, gt(remainder, low))\n low := sub(low, remainder)\n }\n\n // Factor powers of two out of denominator and compute largest power of two divisor of denominator.\n // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.\n\n uint256 twos = denominator & (0 - denominator);\n assembly (\"memory-safe\") {\n // Divide denominator by twos.\n denominator := div(denominator, twos)\n\n // Divide [high low] by twos.\n low := div(low, twos)\n\n // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.\n twos := add(div(sub(0, twos), twos), 1)\n }\n\n // Shift in bits from high into low.\n low |= high * twos;\n\n // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such\n // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for\n // four bits. That is, denominator * inv ≡ 1 mod 2⁴.\n uint256 inverse = (3 * denominator) ^ 2;\n\n // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also\n // works in modular arithmetic, doubling the correct bits in each step.\n inverse *= 2 - denominator * inverse; // inverse mod 2⁸\n inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶\n inverse *= 2 - denominator * inverse; // inverse mod 2³²\n inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴\n inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸\n inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶\n\n // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.\n // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is\n // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high\n // is no longer required.\n result = low * inverse;\n return result;\n }\n }\n\n /**\n * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.\n */\n function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {\n return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);\n }\n\n /**\n * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.\n */\n function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {\n unchecked {\n (uint256 high, uint256 low) = mul512(x, y);\n if (high >= 1 << n) {\n Panic.panic(Panic.UNDER_OVERFLOW);\n }\n return (high << (256 - n)) | (low >> n);\n }\n }\n\n /**\n * @dev Calculates x * y >> n with full precision, following the selected rounding direction.\n */\n function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {\n return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);\n }\n\n /**\n * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.\n *\n * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.\n * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.\n *\n * If the input value is not inversible, 0 is returned.\n *\n * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the\n * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.\n */\n function invMod(uint256 a, uint256 n) internal pure returns (uint256) {\n unchecked {\n if (n == 0) return 0;\n\n // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)\n // Used to compute integers x and y such that: ax + ny = gcd(a, n).\n // When the gcd is 1, then the inverse of a modulo n exists and it's x.\n // ax + ny = 1\n // ax = 1 + (-y)n\n // ax ≡ 1 (mod n) # x is the inverse of a modulo n\n\n // If the remainder is 0 the gcd is n right away.\n uint256 remainder = a % n;\n uint256 gcd = n;\n\n // Therefore the initial coefficients are:\n // ax + ny = gcd(a, n) = n\n // 0a + 1n = n\n int256 x = 0;\n int256 y = 1;\n\n while (remainder != 0) {\n uint256 quotient = gcd / remainder;\n\n (gcd, remainder) = (\n // The old remainder is the next gcd to try.\n remainder,\n // Compute the next remainder.\n // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd\n // where gcd is at most n (capped to type(uint256).max)\n gcd - remainder * quotient\n );\n\n (x, y) = (\n // Increment the coefficient of a.\n y,\n // Decrement the coefficient of n.\n // Can overflow, but the result is casted to uint256 so that the\n // next value of y is \"wrapped around\" to a value between 0 and n - 1.\n x - y * int256(quotient)\n );\n }\n\n if (gcd != 1) return 0; // No inverse exists.\n return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.\n }\n }\n\n /**\n * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.\n *\n * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is\n * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that\n * `a**(p-2)` is the modular multiplicative inverse of a in Fp.\n *\n * NOTE: this function does NOT check that `p` is a prime greater than `2`.\n */\n function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {\n unchecked {\n return Math.modExp(a, p - 2, p);\n }\n }\n\n /**\n * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)\n *\n * Requirements:\n * - modulus can't be zero\n * - underlying staticcall to precompile must succeed\n *\n * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make\n * sure the chain you're using it on supports the precompiled contract for modular exponentiation\n * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,\n * the underlying function will succeed given the lack of a revert, but the result may be incorrectly\n * interpreted as 0.\n */\n function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {\n (bool success, uint256 result) = tryModExp(b, e, m);\n if (!success) {\n Panic.panic(Panic.DIVISION_BY_ZERO);\n }\n return result;\n }\n\n /**\n * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).\n * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying\n * to operate modulo 0 or if the underlying precompile reverted.\n *\n * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain\n * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in\n * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack\n * of a revert, but the result may be incorrectly interpreted as 0.\n */\n function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {\n if (m == 0) return (false, 0);\n assembly (\"memory-safe\") {\n let ptr := mload(0x40)\n // | Offset | Content | Content (Hex) |\n // |-----------|------------|--------------------------------------------------------------------|\n // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |\n // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |\n // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |\n // | 0x60:0x7f | value of b | 0x<.............................................................b> |\n // | 0x80:0x9f | value of e | 0x<.............................................................e> |\n // | 0xa0:0xbf | value of m | 0x<.............................................................m> |\n mstore(ptr, 0x20)\n mstore(add(ptr, 0x20), 0x20)\n mstore(add(ptr, 0x40), 0x20)\n mstore(add(ptr, 0x60), b)\n mstore(add(ptr, 0x80), e)\n mstore(add(ptr, 0xa0), m)\n\n // Given the result < m, it's guaranteed to fit in 32 bytes,\n // so we can use the memory scratch space located at offset 0.\n success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)\n result := mload(0x00)\n }\n }\n\n /**\n * @dev Variant of {modExp} that supports inputs of arbitrary length.\n */\n function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {\n (bool success, bytes memory result) = tryModExp(b, e, m);\n if (!success) {\n Panic.panic(Panic.DIVISION_BY_ZERO);\n }\n return result;\n }\n\n /**\n * @dev Variant of {tryModExp} that supports inputs of arbitrary length.\n */\n function tryModExp(\n bytes memory b,\n bytes memory e,\n bytes memory m\n ) internal view returns (bool success, bytes memory result) {\n if (_zeroBytes(m)) return (false, new bytes(0));\n\n uint256 mLen = m.length;\n\n // Encode call args in result and move the free memory pointer\n result = abi.encodePacked(b.length, e.length, mLen, b, e, m);\n\n assembly (\"memory-safe\") {\n let dataPtr := add(result, 0x20)\n // Write result on top of args to avoid allocating extra memory.\n success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)\n // Overwrite the length.\n // result.length > returndatasize() is guaranteed because returndatasize() == m.length\n mstore(result, mLen)\n // Set the memory pointer after the returned data.\n mstore(0x40, add(dataPtr, mLen))\n }\n }\n\n /**\n * @dev Returns whether the provided byte array is zero.\n */\n function _zeroBytes(bytes memory byteArray) private pure returns (bool) {\n for (uint256 i = 0; i < byteArray.length; ++i) {\n if (byteArray[i] != 0) {\n return false;\n }\n }\n return true;\n }\n\n /**\n * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded\n * towards zero.\n *\n * This method is based on Newton's method for computing square roots; the algorithm is restricted to only\n * using integer operations.\n */\n function sqrt(uint256 a) internal pure returns (uint256) {\n unchecked {\n // Take care of easy edge cases when a == 0 or a == 1\n if (a <= 1) {\n return a;\n }\n\n // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a\n // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between\n // the current value as `ε_n = | x_n - sqrt(a) |`.\n //\n // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root\n // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is\n // bigger than any uint256.\n //\n // By noticing that\n // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`\n // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar\n // to the msb function.\n uint256 aa = a;\n uint256 xn = 1;\n\n if (aa >= (1 << 128)) {\n aa >>= 128;\n xn <<= 64;\n }\n if (aa >= (1 << 64)) {\n aa >>= 64;\n xn <<= 32;\n }\n if (aa >= (1 << 32)) {\n aa >>= 32;\n xn <<= 16;\n }\n if (aa >= (1 << 16)) {\n aa >>= 16;\n xn <<= 8;\n }\n if (aa >= (1 << 8)) {\n aa >>= 8;\n xn <<= 4;\n }\n if (aa >= (1 << 4)) {\n aa >>= 4;\n xn <<= 2;\n }\n if (aa >= (1 << 2)) {\n xn <<= 1;\n }\n\n // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).\n //\n // We can refine our estimation by noticing that the middle of that interval minimizes the error.\n // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).\n // This is going to be our x_0 (and ε_0)\n xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)\n\n // From here, Newton's method give us:\n // x_{n+1} = (x_n + a / x_n) / 2\n //\n // One should note that:\n // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a\n // = ((x_n² + a) / (2 * x_n))² - a\n // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a\n // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)\n // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)\n // = (x_n² - a)² / (2 * x_n)²\n // = ((x_n² - a) / (2 * x_n))²\n // ≥ 0\n // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n\n //\n // This gives us the proof of quadratic convergence of the sequence:\n // ε_{n+1} = | x_{n+1} - sqrt(a) |\n // = | (x_n + a / x_n) / 2 - sqrt(a) |\n // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |\n // = | (x_n - sqrt(a))² / (2 * x_n) |\n // = | ε_n² / (2 * x_n) |\n // = ε_n² / | (2 * x_n) |\n //\n // For the first iteration, we have a special case where x_0 is known:\n // ε_1 = ε_0² / | (2 * x_0) |\n // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))\n // ≤ 2**(2*e-4) / (3 * 2**(e-1))\n // ≤ 2**(e-3) / 3\n // ≤ 2**(e-3-log2(3))\n // ≤ 2**(e-4.5)\n //\n // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:\n // ε_{n+1} = ε_n² / | (2 * x_n) |\n // ≤ (2**(e-k))² / (2 * 2**(e-1))\n // ≤ 2**(2*e-2*k) / 2**e\n // ≤ 2**(e-2*k)\n xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above\n xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5\n xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9\n xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18\n xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36\n xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72\n\n // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision\n // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either\n // sqrt(a) or sqrt(a) + 1.\n return xn - SafeCast.toUint(xn > a / xn);\n }\n }\n\n /**\n * @dev Calculates sqrt(a), following the selected rounding direction.\n */\n function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = sqrt(a);\n return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);\n }\n }\n\n /**\n * @dev Return the log in base 2 of a positive value rounded towards zero.\n * Returns 0 if given 0.\n */\n function log2(uint256 x) internal pure returns (uint256 r) {\n // If value has upper 128 bits set, log2 result is at least 128\n r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;\n // If upper 64 bits of 128-bit half set, add 64 to result\n r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;\n // If upper 32 bits of 64-bit half set, add 32 to result\n r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;\n // If upper 16 bits of 32-bit half set, add 16 to result\n r |= SafeCast.toUint((x >> r) > 0xffff) << 4;\n // If upper 8 bits of 16-bit half set, add 8 to result\n r |= SafeCast.toUint((x >> r) > 0xff) << 3;\n // If upper 4 bits of 8-bit half set, add 4 to result\n r |= SafeCast.toUint((x >> r) > 0xf) << 2;\n\n // Shifts value right by the current result and use it as an index into this lookup table:\n //\n // | x (4 bits) | index | table[index] = MSB position |\n // |------------|---------|-----------------------------|\n // | 0000 | 0 | table[0] = 0 |\n // | 0001 | 1 | table[1] = 0 |\n // | 0010 | 2 | table[2] = 1 |\n // | 0011 | 3 | table[3] = 1 |\n // | 0100 | 4 | table[4] = 2 |\n // | 0101 | 5 | table[5] = 2 |\n // | 0110 | 6 | table[6] = 2 |\n // | 0111 | 7 | table[7] = 2 |\n // | 1000 | 8 | table[8] = 3 |\n // | 1001 | 9 | table[9] = 3 |\n // | 1010 | 10 | table[10] = 3 |\n // | 1011 | 11 | table[11] = 3 |\n // | 1100 | 12 | table[12] = 3 |\n // | 1101 | 13 | table[13] = 3 |\n // | 1110 | 14 | table[14] = 3 |\n // | 1111 | 15 | table[15] = 3 |\n //\n // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.\n assembly (\"memory-safe\") {\n r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))\n }\n }\n\n /**\n * @dev Return the log in base 2, following the selected rounding direction, of a positive value.\n * Returns 0 if given 0.\n */\n function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = log2(value);\n return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);\n }\n }\n\n /**\n * @dev Return the log in base 10 of a positive value rounded towards zero.\n * Returns 0 if given 0.\n */\n function log10(uint256 value) internal pure returns (uint256) {\n uint256 result = 0;\n unchecked {\n if (value >= 10 ** 64) {\n value /= 10 ** 64;\n result += 64;\n }\n if (value >= 10 ** 32) {\n value /= 10 ** 32;\n result += 32;\n }\n if (value >= 10 ** 16) {\n value /= 10 ** 16;\n result += 16;\n }\n if (value >= 10 ** 8) {\n value /= 10 ** 8;\n result += 8;\n }\n if (value >= 10 ** 4) {\n value /= 10 ** 4;\n result += 4;\n }\n if (value >= 10 ** 2) {\n value /= 10 ** 2;\n result += 2;\n }\n if (value >= 10 ** 1) {\n result += 1;\n }\n }\n return result;\n }\n\n /**\n * @dev Return the log in base 10, following the selected rounding direction, of a positive value.\n * Returns 0 if given 0.\n */\n function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = log10(value);\n return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);\n }\n }\n\n /**\n * @dev Return the log in base 256 of a positive value rounded towards zero.\n * Returns 0 if given 0.\n *\n * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.\n */\n function log256(uint256 x) internal pure returns (uint256 r) {\n // If value has upper 128 bits set, log2 result is at least 128\n r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;\n // If upper 64 bits of 128-bit half set, add 64 to result\n r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;\n // If upper 32 bits of 64-bit half set, add 32 to result\n r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;\n // If upper 16 bits of 32-bit half set, add 16 to result\n r |= SafeCast.toUint((x >> r) > 0xffff) << 4;\n // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8\n return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);\n }\n\n /**\n * @dev Return the log in base 256, following the selected rounding direction, of a positive value.\n * Returns 0 if given 0.\n */\n function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = log256(value);\n return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);\n }\n }\n\n /**\n * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.\n */\n function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {\n return uint8(rounding) % 2 == 1;\n }\n}\n"},"@openzeppelin/contracts/utils/math/SafeCast.sol":{"content":"// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)\n// This file was procedurally generated from scripts/generate/templates/SafeCast.js.\n\npragma solidity ^0.8.20;\n\n/**\n * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow\n * checks.\n *\n * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can\n * easily result in undesired exploitation or bugs, since developers usually\n * assume that overflows raise errors. `SafeCast` restores this intuition by\n * reverting the transaction when such an operation overflows.\n *\n * Using this library instead of the unchecked operations eliminates an entire\n * class of bugs, so it's recommended to use it always.\n */\nlibrary SafeCast {\n /**\n * @dev Value doesn't fit in an uint of `bits` size.\n */\n error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);\n\n /**\n * @dev An int value doesn't fit in an uint of `bits` size.\n */\n error SafeCastOverflowedIntToUint(int256 value);\n\n /**\n * @dev Value doesn't fit in an int of `bits` size.\n */\n error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);\n\n /**\n * @dev An uint value doesn't fit in an int of `bits` size.\n */\n error SafeCastOverflowedUintToInt(uint256 value);\n\n /**\n * @dev Returns the downcasted uint248 from uint256, reverting on\n * overflow (when the input is greater than largest uint248).\n *\n * Counterpart to Solidity's `uint248` operator.\n *\n * Requirements:\n *\n * - input must fit into 248 bits\n */\n function toUint248(uint256 value) internal pure returns (uint248) {\n if (value > type(uint248).max) {\n revert SafeCastOverflowedUintDowncast(248, value);\n }\n return uint248(value);\n }\n\n /**\n * @dev Returns the downcasted uint240 from uint256, reverting on\n * overflow (when the input is greater than largest uint240).\n *\n * Counterpart to Solidity's `uint240` operator.\n *\n * Requirements:\n *\n * - input must fit into 240 bits\n */\n function toUint240(uint256 value) internal pure returns (uint240) {\n if (value > type(uint240).max) {\n revert SafeCastOverflowedUintDowncast(240, value);\n }\n return uint240(value);\n }\n\n /**\n * @dev Returns the downcasted uint232 from uint256, reverting on\n * overflow (when the input is greater than largest uint232).\n *\n * Counterpart to Solidity's `uint232` operator.\n *\n * Requirements:\n *\n * - input must fit into 232 bits\n */\n function toUint232(uint256 value) internal pure returns (uint232) {\n if (value > type(uint232).max) {\n revert SafeCastOverflowedUintDowncast(232, value);\n }\n return uint232(value);\n }\n\n /**\n * @dev Returns the downcasted uint224 from uint256, reverting on\n * overflow (when the input is greater than largest uint224).\n *\n * Counterpart to Solidity's `uint224` operator.\n *\n * Requirements:\n *\n * - input must fit into 224 bits\n */\n function toUint224(uint256 value) internal pure returns (uint224) {\n if (value > type(uint224).max) {\n revert SafeCastOverflowedUintDowncast(224, value);\n }\n return uint224(value);\n }\n\n /**\n * @dev Returns the downcasted uint216 from uint256, reverting on\n * overflow (when the input is greater than largest uint216).\n *\n * Counterpart to Solidity's `uint216` operator.\n *\n * Requirements:\n *\n * - input must fit into 216 bits\n */\n function toUint216(uint256 value) internal pure returns (uint216) {\n if (value > type(uint216).max) {\n revert SafeCastOverflowedUintDowncast(216, value);\n }\n return uint216(value);\n }\n\n /**\n * @dev Returns the downcasted uint208 from uint256, reverting on\n * overflow (when the input is greater than largest uint208).\n *\n * Counterpart to Solidity's `uint208` operator.\n *\n * Requirements:\n *\n * - input must fit into 208 bits\n */\n function toUint208(uint256 value) internal pure returns (uint208) {\n if (value > type(uint208).max) {\n revert SafeCastOverflowedUintDowncast(208, value);\n }\n return uint208(value);\n }\n\n /**\n * @dev Returns the downcasted uint200 from uint256, reverting on\n * overflow (when the input is greater than largest uint200).\n *\n * Counterpart to Solidity's `uint200` operator.\n *\n * Requirements:\n *\n * - input must fit into 200 bits\n */\n function toUint200(uint256 value) internal pure returns (uint200) {\n if (value > type(uint200).max) {\n revert SafeCastOverflowedUintDowncast(200, value);\n }\n return uint200(value);\n }\n\n /**\n * @dev Returns the downcasted uint192 from uint256, reverting on\n * overflow (when the input is greater than largest uint192).\n *\n * Counterpart to Solidity's `uint192` operator.\n *\n * Requirements:\n *\n * - input must fit into 192 bits\n */\n function toUint192(uint256 value) internal pure returns (uint192) {\n if (value > type(uint192).max) {\n revert SafeCastOverflowedUintDowncast(192, value);\n }\n return uint192(value);\n }\n\n /**\n * @dev Returns the downcasted uint184 from uint256, reverting on\n * overflow (when the input is greater than largest uint184).\n *\n * Counterpart to Solidity's `uint184` operator.\n *\n * Requirements:\n *\n * - input must fit into 184 bits\n */\n function toUint184(uint256 value) internal pure returns (uint184) {\n if (value > type(uint184).max) {\n revert SafeCastOverflowedUintDowncast(184, value);\n }\n return uint184(value);\n }\n\n /**\n * @dev Returns the downcasted uint176 from uint256, reverting on\n * overflow (when the input is greater than largest uint176).\n *\n * Counterpart to Solidity's `uint176` operator.\n *\n * Requirements:\n *\n * - input must fit into 176 bits\n */\n function toUint176(uint256 value) internal pure returns (uint176) {\n if (value > type(uint176).max) {\n revert SafeCastOverflowedUintDowncast(176, value);\n }\n return uint176(value);\n }\n\n /**\n * @dev Returns the downcasted uint168 from uint256, reverting on\n * overflow (when the input is greater than largest uint168).\n *\n * Counterpart to Solidity's `uint168` operator.\n *\n * Requirements:\n *\n * - input must fit into 168 bits\n */\n function toUint168(uint256 value) internal pure returns (uint168) {\n if (value > type(uint168).max) {\n revert SafeCastOverflowedUintDowncast(168, value);\n }\n return uint168(value);\n }\n\n /**\n * @dev Returns the downcasted uint160 from uint256, reverting on\n * overflow (when the input is greater than largest uint160).\n *\n * Counterpart to Solidity's `uint160` operator.\n *\n * Requirements:\n *\n * - input must fit into 160 bits\n */\n function toUint160(uint256 value) internal pure returns (uint160) {\n if (value > type(uint160).max) {\n revert SafeCastOverflowedUintDowncast(160, value);\n }\n return uint160(value);\n }\n\n /**\n * @dev Returns the downcasted uint152 from uint256, reverting on\n * overflow (when the input is greater than largest uint152).\n *\n * Counterpart to Solidity's `uint152` operator.\n *\n * Requirements:\n *\n * - input must fit into 152 bits\n */\n function toUint152(uint256 value) internal pure returns (uint152) {\n if (value > type(uint152).max) {\n revert SafeCastOverflowedUintDowncast(152, value);\n }\n return uint152(value);\n }\n\n /**\n * @dev Returns the downcasted uint144 from uint256, reverting on\n * overflow (when the input is greater than largest uint144).\n *\n * Counterpart to Solidity's `uint144` operator.\n *\n * Requirements:\n *\n * - input must fit into 144 bits\n */\n function toUint144(uint256 value) internal pure returns (uint144) {\n if (value > type(uint144).max) {\n revert SafeCastOverflowedUintDowncast(144, value);\n }\n return uint144(value);\n }\n\n /**\n * @dev Returns the downcasted uint136 from uint256, reverting on\n * overflow (when the input is greater than largest uint136).\n *\n * Counterpart to Solidity's `uint136` operator.\n *\n * Requirements:\n *\n * - input must fit into 136 bits\n */\n function toUint136(uint256 value) internal pure returns (uint136) {\n if (value > type(uint136).max) {\n revert SafeCastOverflowedUintDowncast(136, value);\n }\n return uint136(value);\n }\n\n /**\n * @dev Returns the downcasted uint128 from uint256, reverting on\n * overflow (when the input is greater than largest uint128).\n *\n * Counterpart to Solidity's `uint128` operator.\n *\n * Requirements:\n *\n * - input must fit into 128 bits\n */\n function toUint128(uint256 value) internal pure returns (uint128) {\n if (value > type(uint128).max) {\n revert SafeCastOverflowedUintDowncast(128, value);\n }\n return uint128(value);\n }\n\n /**\n * @dev Returns the downcasted uint120 from uint256, reverting on\n * overflow (when the input is greater than largest uint120).\n *\n * Counterpart to Solidity's `uint120` operator.\n *\n * Requirements:\n *\n * - input must fit into 120 bits\n */\n function toUint120(uint256 value) internal pure returns (uint120) {\n if (value > type(uint120).max) {\n revert SafeCastOverflowedUintDowncast(120, value);\n }\n return uint120(value);\n }\n\n /**\n * @dev Returns the downcasted uint112 from uint256, reverting on\n * overflow (when the input is greater than largest uint112).\n *\n * Counterpart to Solidity's `uint112` operator.\n *\n * Requirements:\n *\n * - input must fit into 112 bits\n */\n function toUint112(uint256 value) internal pure returns (uint112) {\n if (value > type(uint112).max) {\n revert SafeCastOverflowedUintDowncast(112, value);\n }\n return uint112(value);\n }\n\n /**\n * @dev Returns the downcasted uint104 from uint256, reverting on\n * overflow (when the input is greater than largest uint104).\n *\n * Counterpart to Solidity's `uint104` operator.\n *\n * Requirements:\n *\n * - input must fit into 104 bits\n */\n function toUint104(uint256 value) internal pure returns (uint104) {\n if (value > type(uint104).max) {\n revert SafeCastOverflowedUintDowncast(104, value);\n }\n return uint104(value);\n }\n\n /**\n * @dev Returns the downcasted uint96 from uint256, reverting on\n * overflow (when the input is greater than largest uint96).\n *\n * Counterpart to Solidity's `uint96` operator.\n *\n * Requirements:\n *\n * - input must fit into 96 bits\n */\n function toUint96(uint256 value) internal pure returns (uint96) {\n if (value > type(uint96).max) {\n revert SafeCastOverflowedUintDowncast(96, value);\n }\n return uint96(value);\n }\n\n /**\n * @dev Returns the downcasted uint88 from uint256, reverting on\n * overflow (when the input is greater than largest uint88).\n *\n * Counterpart to Solidity's `uint88` operator.\n *\n * Requirements:\n *\n * - input must fit into 88 bits\n */\n function toUint88(uint256 value) internal pure returns (uint88) {\n if (value > type(uint88).max) {\n revert SafeCastOverflowedUintDowncast(88, value);\n }\n return uint88(value);\n }\n\n /**\n * @dev Returns the downcasted uint80 from uint256, reverting on\n * overflow (when the input is greater than largest uint80).\n *\n * Counterpart to Solidity's `uint80` operator.\n *\n * Requirements:\n *\n * - input must fit into 80 bits\n