@samchon/openapi
Version:
OpenAPI definitions and converters for 'typia' and 'nestia'.
158 lines (157 loc) • 7.97 kB
JavaScript
;
Object.defineProperty(exports, "__esModule", { value: true });
exports.HttpLlm = void 0;
const HttpMigration_1 = require("./HttpMigration");
const HttpLlmApplicationComposer_1 = require("./composers/HttpLlmApplicationComposer");
const LlmSchemaComposer_1 = require("./composers/LlmSchemaComposer");
const HttpLlmFunctionFetcher_1 = require("./http/HttpLlmFunctionFetcher");
const LlmDataMerger_1 = require("./utils/LlmDataMerger");
/**
* LLM function calling application composer from OpenAPI document.
*
* `HttpLlm` is a module for composing LLM (Large Language Model) function
* calling application from the {@link OpenApi.IDocument OpenAPI document}, and
* also for LLM function call execution and parameter merging.
*
* At first, you can construct the LLM function calling application by the
* {@link HttpLlm.application HttpLlm.application()} function. And then the LLM
* has selected a {@link IHttpLlmFunction function} to call and composes its
* arguments, you can execute the function by
* {@link HttpLlm.execute HttpLlm.execute()} or
* {@link HttpLlm.propagate HttpLlm.propagate()}.
*
* By the way, if you have configured the
* {@link IHttpLlmApplication.IOptions.separate} option to separate the
* parameters into human and LLM sides, you can merge these human and LLM sides'
* parameters into one through
* {@link HttpLlm.mergeParameters HttpLlm.mergeParameters()} before the actual
* LLM function call execution.
*
* @author Jeongho Nam - https://github.com/samchon
*/
var HttpLlm;
(function (HttpLlm) {
/**
* Convert OpenAPI document to LLM function calling application.
*
* Converts {@link OpenApi.IDocument OpenAPI document} or
* {@link IHttpMigrateApplication migrated application} to the
* {@link IHttpLlmApplication LLM function calling application}. Every
* {@link OpenApi.IOperation API operations} in the OpenAPI document are
* converted to the {@link IHttpLlmFunction LLM function} type, and they would
* be used for the LLM function calling.
*
* If you have configured the {@link IHttpLlmApplication.IOptions.separate}
* option, every parameters in the {@link IHttpLlmFunction} would be separated
* into both human and LLM sides. In that case, you can merge these human and
* LLM sides' parameters into one through {@link HttpLlm.mergeParameters}
* before the actual LLM function call execution.
*
* Additionally, if you have configured the
* {@link IHttpLlmApplication.IOptions.keyword} as `true`, the number of
* {@link IHttpLlmFunction.parameters} are always 1 and the first parameter
* type is always {@link ILlmSchemaV3.IObject}. I recommend this option because
* LLM can understand the keyword arguments more easily.
*
* @param props Properties for composition
* @returns LLM function calling application
*/
HttpLlm.application = (props) => {
var _a, _b, _c, _d, _e, _f;
// MIGRATE
const migrate = HttpMigration_1.HttpMigration.application(props.document);
const defaultConfig = LlmSchemaComposer_1.LlmSchemaComposer.defaultConfig(props.model);
return HttpLlmApplicationComposer_1.HttpLlmComposer.application({
migrate,
model: props.model,
options: Object.assign(Object.assign({}, Object.fromEntries(Object.entries(defaultConfig).map(([key, value]) => { var _a, _b; return [key, (_b = (_a = props.options) === null || _a === void 0 ? void 0 : _a[key]) !== null && _b !== void 0 ? _b : value]; }))), { separate: (_b = (_a = props.options) === null || _a === void 0 ? void 0 : _a.separate) !== null && _b !== void 0 ? _b : null, maxLength: (_d = (_c = props.options) === null || _c === void 0 ? void 0 : _c.maxLength) !== null && _d !== void 0 ? _d : 64, equals: (_f = (_e = props.options) === null || _e === void 0 ? void 0 : _e.equals) !== null && _f !== void 0 ? _f : false }),
});
};
/**
* Execute the LLM function call.
*
* `HttmLlm.execute()` is a function executing the target
* {@link OpenApi.IOperation API endpoint} with with the connection information
* and arguments composed by Large Language Model like OpenAI (+human
* sometimes).
*
* By the way, if you've configured the
* {@link IHttpLlmApplication.IOptions.separate}, so that the parameters are
* separated to human and LLM sides, you have to merge these humand and LLM
* sides' parameters into one through {@link HttpLlm.mergeParameters}
* function.
*
* About the {@link IHttpLlmApplication.IOptions.keyword} option, don't worry
* anything. This `HttmLlm.execute()` function will automatically recognize
* the keyword arguments and convert them to the proper sequence.
*
* For reference, if the target API endpoinnt responds none 200/201 status,
* this would be considered as an error and the {@link HttpError} would be
* thrown. Otherwise you don't want such rule, you can use the
* {@link HttpLlm.propagate} function instead.
*
* @param props Properties for the LLM function call
* @returns Return value (response body) from the API endpoint
* @throws HttpError when the API endpoint responds none 200/201 status
*/
HttpLlm.execute = (props) => HttpLlmFunctionFetcher_1.HttpLlmFunctionFetcher.execute(props);
/**
* Propagate the LLM function call.
*
* `HttmLlm.propagate()` is a function propagating the target
* {@link OpenApi.IOperation API endpoint} with with the connection information
* and arguments composed by Large Language Model like OpenAI (+human
* sometimes).
*
* By the way, if you've configured the
* {@link IHttpLlmApplication.IOptions.separate}, so that the parameters are
* separated to human and LLM sides, you have to merge these humand and LLM
* sides' parameters into one through {@link HttpLlm.mergeParameters}
* function.
*
* About the {@link IHttpLlmApplication.IOptions.keyword} option, don't worry
* anything. This `HttmLlm.propagate()` function will automatically recognize
* the keyword arguments and convert them to the proper sequence.
*
* For reference, the propagation means always returning the response from the
* API endpoint, even if the status is not 200/201. This is useful when you
* want to handle the response by yourself.
*
* @param props Properties for the LLM function call
* @returns Response from the API endpoint
* @throws Error only when the connection is failed
*/
HttpLlm.propagate = (props) => HttpLlmFunctionFetcher_1.HttpLlmFunctionFetcher.propagate(props);
/**
* Merge the parameters.
*
* If you've configured the {@link IHttpLlmApplication.IOptions.separate}
* option, so that the parameters are separated to human and LLM sides, you
* can merge these humand and LLM sides' parameters into one through this
* `HttpLlm.mergeParameters()` function before the actual LLM function call
* wexecution.
*
* On contrary, if you've not configured the
* {@link IHttpLlmApplication.IOptions.separate} option, this function would
* throw an error.
*
* @param props Properties for the parameters' merging
* @returns Merged parameter values
*/
HttpLlm.mergeParameters = (props) => LlmDataMerger_1.LlmDataMerger.parameters(props);
/**
* Merge two values.
*
* If both values are objects, then combines them in the properties level.
*
* Otherwise, returns the latter value if it's not null, otherwise the former
* value.
*
* - `return (y ?? x)`
*
* @param x Value X to merge
* @param y Value Y to merge
* @returns Merged value
*/
HttpLlm.mergeValue = (x, y) => LlmDataMerger_1.LlmDataMerger.value(x, y);
})(HttpLlm || (exports.HttpLlm = HttpLlm = {}));