@safe-global/safe-contracts
Version:
Ethereum multisig contract
1 lines • 4.46 MB
JSON
{"id":"fac0757097c452567d4b64f14075f2c2","_format":"hh-sol-build-info-1","solcVersion":"0.7.6","solcLongVersion":"0.7.6+commit.7338295f","input":{"language":"Solidity","sources":{"@openzeppelin/contracts/math/SafeMath.sol":{"content":"// SPDX-License-Identifier: MIT\n\npragma solidity >=0.6.0 <0.8.0;\n\n/**\n * @dev Wrappers over Solidity's arithmetic operations with added overflow\n * checks.\n *\n * Arithmetic operations in Solidity wrap on overflow. This can easily result\n * in bugs, because programmers usually assume that an overflow raises an\n * error, which is the standard behavior in high level programming languages.\n * `SafeMath` restores this intuition by reverting the transaction when an\n * operation overflows.\n *\n * Using this library instead of the unchecked operations eliminates an entire\n * class of bugs, so it's recommended to use it always.\n */\nlibrary SafeMath {\n /**\n * @dev Returns the addition of two unsigned integers, with an overflow flag.\n *\n * _Available since v3.4._\n */\n function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {\n uint256 c = a + b;\n if (c < a) return (false, 0);\n return (true, c);\n }\n\n /**\n * @dev Returns the substraction of two unsigned integers, with an overflow flag.\n *\n * _Available since v3.4._\n */\n function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {\n if (b > a) return (false, 0);\n return (true, a - b);\n }\n\n /**\n * @dev Returns the multiplication of two unsigned integers, with an overflow flag.\n *\n * _Available since v3.4._\n */\n function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {\n // Gas optimization: this is cheaper than requiring 'a' not being zero, but the\n // benefit is lost if 'b' is also tested.\n // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522\n if (a == 0) return (true, 0);\n uint256 c = a * b;\n if (c / a != b) return (false, 0);\n return (true, c);\n }\n\n /**\n * @dev Returns the division of two unsigned integers, with a division by zero flag.\n *\n * _Available since v3.4._\n */\n function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {\n if (b == 0) return (false, 0);\n return (true, a / b);\n }\n\n /**\n * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.\n *\n * _Available since v3.4._\n */\n function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {\n if (b == 0) return (false, 0);\n return (true, a % b);\n }\n\n /**\n * @dev Returns the addition of two unsigned integers, reverting on\n * overflow.\n *\n * Counterpart to Solidity's `+` operator.\n *\n * Requirements:\n *\n * - Addition cannot overflow.\n */\n function add(uint256 a, uint256 b) internal pure returns (uint256) {\n uint256 c = a + b;\n require(c >= a, \"SafeMath: addition overflow\");\n return c;\n }\n\n /**\n * @dev Returns the subtraction of two unsigned integers, reverting on\n * overflow (when the result is negative).\n *\n * Counterpart to Solidity's `-` operator.\n *\n * Requirements:\n *\n * - Subtraction cannot overflow.\n */\n function sub(uint256 a, uint256 b) internal pure returns (uint256) {\n require(b <= a, \"SafeMath: subtraction overflow\");\n return a - b;\n }\n\n /**\n * @dev Returns the multiplication of two unsigned integers, reverting on\n * overflow.\n *\n * Counterpart to Solidity's `*` operator.\n *\n * Requirements:\n *\n * - Multiplication cannot overflow.\n */\n function mul(uint256 a, uint256 b) internal pure returns (uint256) {\n if (a == 0) return 0;\n uint256 c = a * b;\n require(c / a == b, \"SafeMath: multiplication overflow\");\n return c;\n }\n\n /**\n * @dev Returns the integer division of two unsigned integers, reverting on\n * division by zero. The result is rounded towards zero.\n *\n * Counterpart to Solidity's `/` operator. Note: this function uses a\n * `revert` opcode (which leaves remaining gas untouched) while Solidity\n * uses an invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n *\n * - The divisor cannot be zero.\n */\n function div(uint256 a, uint256 b) internal pure returns (uint256) {\n require(b > 0, \"SafeMath: division by zero\");\n return a / b;\n }\n\n /**\n * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),\n * reverting when dividing by zero.\n *\n * Counterpart to Solidity's `%` operator. This function uses a `revert`\n * opcode (which leaves remaining gas untouched) while Solidity uses an\n * invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n *\n * - The divisor cannot be zero.\n */\n function mod(uint256 a, uint256 b) internal pure returns (uint256) {\n require(b > 0, \"SafeMath: modulo by zero\");\n return a % b;\n }\n\n /**\n * @dev Returns the subtraction of two unsigned integers, reverting with custom message on\n * overflow (when the result is negative).\n *\n * CAUTION: This function is deprecated because it requires allocating memory for the error\n * message unnecessarily. For custom revert reasons use {trySub}.\n *\n * Counterpart to Solidity's `-` operator.\n *\n * Requirements:\n *\n * - Subtraction cannot overflow.\n */\n function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {\n require(b <= a, errorMessage);\n return a - b;\n }\n\n /**\n * @dev Returns the integer division of two unsigned integers, reverting with custom message on\n * division by zero. The result is rounded towards zero.\n *\n * CAUTION: This function is deprecated because it requires allocating memory for the error\n * message unnecessarily. For custom revert reasons use {tryDiv}.\n *\n * Counterpart to Solidity's `/` operator. Note: this function uses a\n * `revert` opcode (which leaves remaining gas untouched) while Solidity\n * uses an invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n *\n * - The divisor cannot be zero.\n */\n function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {\n require(b > 0, errorMessage);\n return a / b;\n }\n\n /**\n * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),\n * reverting with custom message when dividing by zero.\n *\n * CAUTION: This function is deprecated because it requires allocating memory for the error\n * message unnecessarily. For custom revert reasons use {tryMod}.\n *\n * Counterpart to Solidity's `%` operator. This function uses a `revert`\n * opcode (which leaves remaining gas untouched) while Solidity uses an\n * invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n *\n * - The divisor cannot be zero.\n */\n function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {\n require(b > 0, errorMessage);\n return a % b;\n }\n}\n"},"@openzeppelin/contracts/proxy/Proxy.sol":{"content":"// SPDX-License-Identifier: MIT\n\npragma solidity >=0.6.0 <0.8.0;\n\n/**\n * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM\n * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to\n * be specified by overriding the virtual {_implementation} function.\n *\n * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a\n * different contract through the {_delegate} function.\n *\n * The success and return data of the delegated call will be returned back to the caller of the proxy.\n */\nabstract contract Proxy {\n /**\n * @dev Delegates the current call to `implementation`.\n *\n * This function does not return to its internall call site, it will return directly to the external caller.\n */\n function _delegate(address implementation) internal virtual {\n // solhint-disable-next-line no-inline-assembly\n assembly {\n // Copy msg.data. We take full control of memory in this inline assembly\n // block because it will not return to Solidity code. We overwrite the\n // Solidity scratch pad at memory position 0.\n calldatacopy(0, 0, calldatasize())\n\n // Call the implementation.\n // out and outsize are 0 because we don't know the size yet.\n let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)\n\n // Copy the returned data.\n returndatacopy(0, 0, returndatasize())\n\n switch result\n // delegatecall returns 0 on error.\n case 0 { revert(0, returndatasize()) }\n default { return(0, returndatasize()) }\n }\n }\n\n /**\n * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function\n * and {_fallback} should delegate.\n */\n function _implementation() internal view virtual returns (address);\n\n /**\n * @dev Delegates the current call to the address returned by `_implementation()`.\n *\n * This function does not return to its internall call site, it will return directly to the external caller.\n */\n function _fallback() internal virtual {\n _beforeFallback();\n _delegate(_implementation());\n }\n\n /**\n * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other\n * function in the contract matches the call data.\n */\n fallback () external payable virtual {\n _fallback();\n }\n\n /**\n * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data\n * is empty.\n */\n receive () external payable virtual {\n _fallback();\n }\n\n /**\n * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`\n * call, or as part of the Solidity `fallback` or `receive` functions.\n *\n * If overriden should call `super._beforeFallback()`.\n */\n function _beforeFallback() internal virtual {\n }\n}\n"},"@openzeppelin/contracts/proxy/UpgradeableProxy.sol":{"content":"// SPDX-License-Identifier: MIT\n\npragma solidity >=0.6.0 <0.8.0;\n\nimport \"./Proxy.sol\";\nimport \"../utils/Address.sol\";\n\n/**\n * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an\n * implementation address that can be changed. This address is stored in storage in the location specified by\n * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the\n * implementation behind the proxy.\n *\n * Upgradeability is only provided internally through {_upgradeTo}. For an externally upgradeable proxy see\n * {TransparentUpgradeableProxy}.\n */\ncontract UpgradeableProxy is Proxy {\n /**\n * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.\n *\n * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded\n * function call, and allows initializating the storage of the proxy like a Solidity constructor.\n */\n constructor(address _logic, bytes memory _data) public payable {\n assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256(\"eip1967.proxy.implementation\")) - 1));\n _setImplementation(_logic);\n if(_data.length > 0) {\n Address.functionDelegateCall(_logic, _data);\n }\n }\n\n /**\n * @dev Emitted when the implementation is upgraded.\n */\n event Upgraded(address indexed implementation);\n\n /**\n * @dev Storage slot with the address of the current implementation.\n * This is the keccak-256 hash of \"eip1967.proxy.implementation\" subtracted by 1, and is\n * validated in the constructor.\n */\n bytes32 private constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;\n\n /**\n * @dev Returns the current implementation address.\n */\n function _implementation() internal view virtual override returns (address impl) {\n bytes32 slot = _IMPLEMENTATION_SLOT;\n // solhint-disable-next-line no-inline-assembly\n assembly {\n impl := sload(slot)\n }\n }\n\n /**\n * @dev Upgrades the proxy to a new implementation.\n *\n * Emits an {Upgraded} event.\n */\n function _upgradeTo(address newImplementation) internal virtual {\n _setImplementation(newImplementation);\n emit Upgraded(newImplementation);\n }\n\n /**\n * @dev Stores a new address in the EIP1967 implementation slot.\n */\n function _setImplementation(address newImplementation) private {\n require(Address.isContract(newImplementation), \"UpgradeableProxy: new implementation is not a contract\");\n\n bytes32 slot = _IMPLEMENTATION_SLOT;\n\n // solhint-disable-next-line no-inline-assembly\n assembly {\n sstore(slot, newImplementation)\n }\n }\n}\n"},"@openzeppelin/contracts/token/ERC20/ERC20.sol":{"content":"// SPDX-License-Identifier: MIT\n\npragma solidity >=0.6.0 <0.8.0;\n\nimport \"../../utils/Context.sol\";\nimport \"./IERC20.sol\";\nimport \"../../math/SafeMath.sol\";\n\n/**\n * @dev Implementation of the {IERC20} interface.\n *\n * This implementation is agnostic to the way tokens are created. This means\n * that a supply mechanism has to be added in a derived contract using {_mint}.\n * For a generic mechanism see {ERC20PresetMinterPauser}.\n *\n * TIP: For a detailed writeup see our guide\n * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How\n * to implement supply mechanisms].\n *\n * We have followed general OpenZeppelin guidelines: functions revert instead\n * of returning `false` on failure. This behavior is nonetheless conventional\n * and does not conflict with the expectations of ERC20 applications.\n *\n * Additionally, an {Approval} event is emitted on calls to {transferFrom}.\n * This allows applications to reconstruct the allowance for all accounts just\n * by listening to said events. Other implementations of the EIP may not emit\n * these events, as it isn't required by the specification.\n *\n * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}\n * functions have been added to mitigate the well-known issues around setting\n * allowances. See {IERC20-approve}.\n */\ncontract ERC20 is Context, IERC20 {\n using SafeMath for uint256;\n\n mapping (address => uint256) private _balances;\n\n mapping (address => mapping (address => uint256)) private _allowances;\n\n uint256 private _totalSupply;\n\n string private _name;\n string private _symbol;\n uint8 private _decimals;\n\n /**\n * @dev Sets the values for {name} and {symbol}, initializes {decimals} with\n * a default value of 18.\n *\n * To select a different value for {decimals}, use {_setupDecimals}.\n *\n * All three of these values are immutable: they can only be set once during\n * construction.\n */\n constructor (string memory name_, string memory symbol_) public {\n _name = name_;\n _symbol = symbol_;\n _decimals = 18;\n }\n\n /**\n * @dev Returns the name of the token.\n */\n function name() public view virtual returns (string memory) {\n return _name;\n }\n\n /**\n * @dev Returns the symbol of the token, usually a shorter version of the\n * name.\n */\n function symbol() public view virtual returns (string memory) {\n return _symbol;\n }\n\n /**\n * @dev Returns the number of decimals used to get its user representation.\n * For example, if `decimals` equals `2`, a balance of `505` tokens should\n * be displayed to a user as `5,05` (`505 / 10 ** 2`).\n *\n * Tokens usually opt for a value of 18, imitating the relationship between\n * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is\n * called.\n *\n * NOTE: This information is only used for _display_ purposes: it in\n * no way affects any of the arithmetic of the contract, including\n * {IERC20-balanceOf} and {IERC20-transfer}.\n */\n function decimals() public view virtual returns (uint8) {\n return _decimals;\n }\n\n /**\n * @dev See {IERC20-totalSupply}.\n */\n function totalSupply() public view virtual override returns (uint256) {\n return _totalSupply;\n }\n\n /**\n * @dev See {IERC20-balanceOf}.\n */\n function balanceOf(address account) public view virtual override returns (uint256) {\n return _balances[account];\n }\n\n /**\n * @dev See {IERC20-transfer}.\n *\n * Requirements:\n *\n * - `recipient` cannot be the zero address.\n * - the caller must have a balance of at least `amount`.\n */\n function transfer(address recipient, uint256 amount) public virtual override returns (bool) {\n _transfer(_msgSender(), recipient, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-allowance}.\n */\n function allowance(address owner, address spender) public view virtual override returns (uint256) {\n return _allowances[owner][spender];\n }\n\n /**\n * @dev See {IERC20-approve}.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n */\n function approve(address spender, uint256 amount) public virtual override returns (bool) {\n _approve(_msgSender(), spender, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-transferFrom}.\n *\n * Emits an {Approval} event indicating the updated allowance. This is not\n * required by the EIP. See the note at the beginning of {ERC20}.\n *\n * Requirements:\n *\n * - `sender` and `recipient` cannot be the zero address.\n * - `sender` must have a balance of at least `amount`.\n * - the caller must have allowance for ``sender``'s tokens of at least\n * `amount`.\n */\n function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {\n _transfer(sender, recipient, amount);\n _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, \"ERC20: transfer amount exceeds allowance\"));\n return true;\n }\n\n /**\n * @dev Atomically increases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n */\n function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {\n _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));\n return true;\n }\n\n /**\n * @dev Atomically decreases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n * - `spender` must have allowance for the caller of at least\n * `subtractedValue`.\n */\n function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {\n _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, \"ERC20: decreased allowance below zero\"));\n return true;\n }\n\n /**\n * @dev Moves tokens `amount` from `sender` to `recipient`.\n *\n * This is internal function is equivalent to {transfer}, and can be used to\n * e.g. implement automatic token fees, slashing mechanisms, etc.\n *\n * Emits a {Transfer} event.\n *\n * Requirements:\n *\n * - `sender` cannot be the zero address.\n * - `recipient` cannot be the zero address.\n * - `sender` must have a balance of at least `amount`.\n */\n function _transfer(address sender, address recipient, uint256 amount) internal virtual {\n require(sender != address(0), \"ERC20: transfer from the zero address\");\n require(recipient != address(0), \"ERC20: transfer to the zero address\");\n\n _beforeTokenTransfer(sender, recipient, amount);\n\n _balances[sender] = _balances[sender].sub(amount, \"ERC20: transfer amount exceeds balance\");\n _balances[recipient] = _balances[recipient].add(amount);\n emit Transfer(sender, recipient, amount);\n }\n\n /** @dev Creates `amount` tokens and assigns them to `account`, increasing\n * the total supply.\n *\n * Emits a {Transfer} event with `from` set to the zero address.\n *\n * Requirements:\n *\n * - `to` cannot be the zero address.\n */\n function _mint(address account, uint256 amount) internal virtual {\n require(account != address(0), \"ERC20: mint to the zero address\");\n\n _beforeTokenTransfer(address(0), account, amount);\n\n _totalSupply = _totalSupply.add(amount);\n _balances[account] = _balances[account].add(amount);\n emit Transfer(address(0), account, amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from `account`, reducing the\n * total supply.\n *\n * Emits a {Transfer} event with `to` set to the zero address.\n *\n * Requirements:\n *\n * - `account` cannot be the zero address.\n * - `account` must have at least `amount` tokens.\n */\n function _burn(address account, uint256 amount) internal virtual {\n require(account != address(0), \"ERC20: burn from the zero address\");\n\n _beforeTokenTransfer(account, address(0), amount);\n\n _balances[account] = _balances[account].sub(amount, \"ERC20: burn amount exceeds balance\");\n _totalSupply = _totalSupply.sub(amount);\n emit Transfer(account, address(0), amount);\n }\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.\n *\n * This internal function is equivalent to `approve`, and can be used to\n * e.g. set automatic allowances for certain subsystems, etc.\n *\n * Emits an {Approval} event.\n *\n * Requirements:\n *\n * - `owner` cannot be the zero address.\n * - `spender` cannot be the zero address.\n */\n function _approve(address owner, address spender, uint256 amount) internal virtual {\n require(owner != address(0), \"ERC20: approve from the zero address\");\n require(spender != address(0), \"ERC20: approve to the zero address\");\n\n _allowances[owner][spender] = amount;\n emit Approval(owner, spender, amount);\n }\n\n /**\n * @dev Sets {decimals} to a value other than the default one of 18.\n *\n * WARNING: This function should only be called from the constructor. Most\n * applications that interact with token contracts will not expect\n * {decimals} to ever change, and may work incorrectly if it does.\n */\n function _setupDecimals(uint8 decimals_) internal virtual {\n _decimals = decimals_;\n }\n\n /**\n * @dev Hook that is called before any transfer of tokens. This includes\n * minting and burning.\n *\n * Calling conditions:\n *\n * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens\n * will be to transferred to `to`.\n * - when `from` is zero, `amount` tokens will be minted for `to`.\n * - when `to` is zero, `amount` of ``from``'s tokens will be burned.\n * - `from` and `to` are never both zero.\n *\n * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].\n */\n function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }\n}\n"},"@openzeppelin/contracts/token/ERC20/IERC20.sol":{"content":"// SPDX-License-Identifier: MIT\n\npragma solidity >=0.6.0 <0.8.0;\n\n/**\n * @dev Interface of the ERC20 standard as defined in the EIP.\n */\ninterface IERC20 {\n /**\n * @dev Returns the amount of tokens in existence.\n */\n function totalSupply() external view returns (uint256);\n\n /**\n * @dev Returns the amount of tokens owned by `account`.\n */\n function balanceOf(address account) external view returns (uint256);\n\n /**\n * @dev Moves `amount` tokens from the caller's account to `recipient`.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transfer(address recipient, uint256 amount) external returns (bool);\n\n /**\n * @dev Returns the remaining number of tokens that `spender` will be\n * allowed to spend on behalf of `owner` through {transferFrom}. This is\n * zero by default.\n *\n * This value changes when {approve} or {transferFrom} are called.\n */\n function allowance(address owner, address spender) external view returns (uint256);\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * IMPORTANT: Beware that changing an allowance with this method brings the risk\n * that someone may use both the old and the new allowance by unfortunate\n * transaction ordering. One possible solution to mitigate this race\n * condition is to first reduce the spender's allowance to 0 and set the\n * desired value afterwards:\n * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729\n *\n * Emits an {Approval} event.\n */\n function approve(address spender, uint256 amount) external returns (bool);\n\n /**\n * @dev Moves `amount` tokens from `sender` to `recipient` using the\n * allowance mechanism. `amount` is then deducted from the caller's\n * allowance.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);\n\n /**\n * @dev Emitted when `value` tokens are moved from one account (`from`) to\n * another (`to`).\n *\n * Note that `value` may be zero.\n */\n event Transfer(address indexed from, address indexed to, uint256 value);\n\n /**\n * @dev Emitted when the allowance of a `spender` for an `owner` is set by\n * a call to {approve}. `value` is the new allowance.\n */\n event Approval(address indexed owner, address indexed spender, uint256 value);\n}\n"},"@openzeppelin/contracts/utils/Address.sol":{"content":"// SPDX-License-Identifier: MIT\n\npragma solidity >=0.6.2 <0.8.0;\n\n/**\n * @dev Collection of functions related to the address type\n */\nlibrary Address {\n /**\n * @dev Returns true if `account` is a contract.\n *\n * [IMPORTANT]\n * ====\n * It is unsafe to assume that an address for which this function returns\n * false is an externally-owned account (EOA) and not a contract.\n *\n * Among others, `isContract` will return false for the following\n * types of addresses:\n *\n * - an externally-owned account\n * - a contract in construction\n * - an address where a contract will be created\n * - an address where a contract lived, but was destroyed\n * ====\n */\n function isContract(address account) internal view returns (bool) {\n // This method relies on extcodesize, which returns 0 for contracts in\n // construction, since the code is only stored at the end of the\n // constructor execution.\n\n uint256 size;\n // solhint-disable-next-line no-inline-assembly\n assembly { size := extcodesize(account) }\n return size > 0;\n }\n\n /**\n * @dev Replacement for Solidity's `transfer`: sends `amount` wei to\n * `recipient`, forwarding all available gas and reverting on errors.\n *\n * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost\n * of certain opcodes, possibly making contracts go over the 2300 gas limit\n * imposed by `transfer`, making them unable to receive funds via\n * `transfer`. {sendValue} removes this limitation.\n *\n * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].\n *\n * IMPORTANT: because control is transferred to `recipient`, care must be\n * taken to not create reentrancy vulnerabilities. Consider using\n * {ReentrancyGuard} or the\n * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].\n */\n function sendValue(address payable recipient, uint256 amount) internal {\n require(address(this).balance >= amount, \"Address: insufficient balance\");\n\n // solhint-disable-next-line avoid-low-level-calls, avoid-call-value\n (bool success, ) = recipient.call{ value: amount }(\"\");\n require(success, \"Address: unable to send value, recipient may have reverted\");\n }\n\n /**\n * @dev Performs a Solidity function call using a low level `call`. A\n * plain`call` is an unsafe replacement for a function call: use this\n * function instead.\n *\n * If `target` reverts with a revert reason, it is bubbled up by this\n * function (like regular Solidity function calls).\n *\n * Returns the raw returned data. To convert to the expected return value,\n * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].\n *\n * Requirements:\n *\n * - `target` must be a contract.\n * - calling `target` with `data` must not revert.\n *\n * _Available since v3.1._\n */\n function functionCall(address target, bytes memory data) internal returns (bytes memory) {\n return functionCall(target, data, \"Address: low-level call failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with\n * `errorMessage` as a fallback revert reason when `target` reverts.\n *\n * _Available since v3.1._\n */\n function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {\n return functionCallWithValue(target, data, 0, errorMessage);\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n * but also transferring `value` wei to `target`.\n *\n * Requirements:\n *\n * - the calling contract must have an ETH balance of at least `value`.\n * - the called Solidity function must be `payable`.\n *\n * _Available since v3.1._\n */\n function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {\n return functionCallWithValue(target, data, value, \"Address: low-level call with value failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but\n * with `errorMessage` as a fallback revert reason when `target` reverts.\n *\n * _Available since v3.1._\n */\n function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {\n require(address(this).balance >= value, \"Address: insufficient balance for call\");\n require(isContract(target), \"Address: call to non-contract\");\n\n // solhint-disable-next-line avoid-low-level-calls\n (bool success, bytes memory returndata) = target.call{ value: value }(data);\n return _verifyCallResult(success, returndata, errorMessage);\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n * but performing a static call.\n *\n * _Available since v3.3._\n */\n function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {\n return functionStaticCall(target, data, \"Address: low-level static call failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],\n * but performing a static call.\n *\n * _Available since v3.3._\n */\n function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {\n require(isContract(target), \"Address: static call to non-contract\");\n\n // solhint-disable-next-line avoid-low-level-calls\n (bool success, bytes memory returndata) = target.staticcall(data);\n return _verifyCallResult(success, returndata, errorMessage);\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n * but performing a delegate call.\n *\n * _Available since v3.4._\n */\n function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {\n return functionDelegateCall(target, data, \"Address: low-level delegate call failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],\n * but performing a delegate call.\n *\n * _Available since v3.4._\n */\n function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {\n require(isContract(target), \"Address: delegate call to non-contract\");\n\n // solhint-disable-next-line avoid-low-level-calls\n (bool success, bytes memory returndata) = target.delegatecall(data);\n return _verifyCallResult(success, returndata, errorMessage);\n }\n\n function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {\n if (success) {\n return returndata;\n } else {\n // Look for revert reason and bubble it up if present\n if (returndata.length > 0) {\n // The easiest way to bubble the revert reason is using memory via assembly\n\n // solhint-disable-next-line no-inline-assembly\n assembly {\n let returndata_size := mload(returndata)\n revert(add(32, returndata), returndata_size)\n }\n } else {\n revert(errorMessage);\n }\n }\n }\n}\n"},"@openzeppelin/contracts/utils/Context.sol":{"content":"// SPDX-License-Identifier: MIT\n\npragma solidity >=0.6.0 <0.8.0;\n\n/*\n * @dev Provides information about the current execution context, including the\n * sender of the transaction and its data. While these are generally available\n * via msg.sender and msg.data, they should not be accessed in such a direct\n * manner, since when dealing with GSN meta-transactions the account sending and\n * paying for execution may not be the actual sender (as far as an application\n * is concerned).\n *\n * This contract is only required for intermediate, library-like contracts.\n */\nabstract contract Context {\n function _msgSender() internal view virtual returns (address payable) {\n return msg.sender;\n }\n\n function _msgData() internal view virtual returns (bytes memory) {\n this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691\n return msg.data;\n }\n}\n"},"contracts/accessors/SimulateTxAccessor.sol":{"content":"// SPDX-License-Identifier: LGPL-3.0-only\npragma solidity >=0.7.0 <0.9.0;\n\nimport \"../base/Executor.sol\";\n\n/**\n * @title Simulate Transaction Accessor.\n * @notice Can be used with StorageAccessible to simulate Safe transactions.\n * @author Richard Meissner - @rmeissner\n */\ncontract SimulateTxAccessor is Executor {\n address private immutable accessorSingleton;\n\n constructor() {\n accessorSingleton = address(this);\n }\n\n /**\n * @notice Modifier to make a function callable via delegatecall only.\n * If the function is called via a regular call, it will revert.\n */\n modifier onlyDelegateCall() {\n require(address(this) != accessorSingleton, \"SimulateTxAccessor should only be called via delegatecall\");\n _;\n }\n\n /**\n * @notice Simulates a Safe transaction and returns the used gas, success boolean and the return data.\n * @dev Executes the specified operation {Call, DelegateCall} and returns operation-specific data.\n * Has to be called via delegatecall.\n * This returns the data equal to `abi.encode(uint256(etimate), bool(success), bytes(returnData))`.\n * Specifically, the returndata will be:\n * `estimate:uint256 || success:bool || returnData.length:uint256 || returnData:bytes`.\n * @param to Destination address .\n * @param value Native token value.\n * @param data Data payload.\n * @param operation Operation type {Call, DelegateCall}.\n * @return estimate Gas used.\n * @return success Success boolean value.\n * @return returnData Return data.\n */\n function simulate(\n address to,\n uint256 value,\n bytes calldata data,\n Enum.Operation operation\n ) external onlyDelegateCall returns (uint256 estimate, bool success, bytes memory returnData) {\n uint256 startGas = gasleft();\n success = execute(to, value, data, operation, gasleft());\n estimate = startGas - gasleft();\n // solhint-disable-next-line no-inline-assembly\n assembly {\n // Load free memory location\n let ptr := mload(0x40)\n // We allocate memory for the return data by setting the free memory location to\n // current free memory location + data size + 32 bytes for data size value\n mstore(0x40, add(ptr, add(returndatasize(), 0x20)))\n // Store the size\n mstore(ptr, returndatasize())\n // Store the data\n returndatacopy(add(ptr, 0x20), 0, returndatasize())\n // Point the return data to the correct memory location\n returnData := ptr\n }\n }\n}\n"},"contracts/base/Executor.sol":{"content":"// SPDX-License-Identifier: LGPL-3.0-only\npragma solidity >=0.7.0 <0.9.0;\nimport \"../common/Enum.sol\";\n\n/**\n * @title Executor - A contract that can execute transactions\n * @author Richard Meissner - @rmeissner\n */\nabstract contract Executor {\n /**\n * @notice Executes either a delegatecall or a call with provided parameters.\n * @dev This method doesn't perform any sanity check of the transaction, such as:\n * - if the contract at `to` address has code or not\n * It is the responsibility of the caller to perform such checks.\n * @param to Destination address.\n * @param value Ether value.\n * @param data Data payload.\n * @param operation Operation type.\n * @return success boolean flag indicating if the call succeeded.\n */\n function execute(\n address to,\n uint256 value,\n bytes memory data,\n Enum.Operation operation,\n uint256 txGas\n ) internal returns (bool success) {\n if (operation == Enum.Operation.DelegateCall) {\n // solhint-disable-next-line no-inline-assembly\n assembly {\n success := delegatecall(txGas, to, add(data, 0x20), mload(data), 0, 0)\n }\n } else {\n // solhint-disable-next-line no-inline-assembly\n assembly {\n success := call(txGas, to, value, add(data, 0x20), mload(data), 0, 0)\n }\n }\n }\n}\n"},"contracts/base/FallbackManager.sol":{"content":"// SPDX-License-Identifier: LGPL-3.0-only\npragma solidity >=0.7.0 <0.9.0;\n\nimport \"../common/SelfAuthorized.sol\";\n\n/**\n * @title Fallback Manager - A contract managing fallback calls made to this contract\n * @author Richard Meissner - @rmeissner\n */\nabstract contract FallbackManager is SelfAuthorized {\n event ChangedFallbackHandler(address indexed handler);\n\n // keccak256(\"fallback_manager.handler.address\")\n bytes32 internal constant FALLBACK_HANDLER_STORAGE_SLOT = 0x6c9a6c4a39284e37ed1cf53d337577d14212a4870fb976a4366c693b939918d5;\n\n /**\n * @notice Internal function to set the fallback handler.\n * @param handler contract to handle fallback calls.\n */\n function internalSetFallbackHandler(address handler) internal {\n /*\n If a fallback handler is set to self, then the following attack vector is opened:\n Imagine we have a function like this:\n function withdraw() internal authorized {\n withdrawalAddress.call.value(address(this).balance)(\"\");\n }\n\n If the fallback method is triggered, the fallback handler appends the msg.sender address to the calldata and calls the fallback handler.\n A potential attacker could call a Safe with the 3 bytes signature of a withdraw function. Since 3 bytes do not create a valid signature,\n the call would end in a fallback handler. Since it appends the msg.sender address to the calldata, the attacker could craft an address \n where the first 3 bytes of the previous calldata + the first byte of the address make up a valid function signature. The subsequent call would result in unsanctioned access to Safe's internal protected methods.\n For some reason, solidity matches the first 4 bytes of the calldata to a function signature, regardless if more data follow these 4 bytes.\n */\n require(handler != address(this), \"GS400\");\n\n bytes32 slot = FALLBACK_HANDLER_STORAGE_SLOT;\n // solhint-disable-next-line no-inline-assembly\n assembly {\n sstore(slot, handler)\n }\n }\n\n /**\n * @notice Set Fallback Handler to `handler` for the Safe.\n * @dev Only fallback calls without value and with data will be forwarded.\n * This can only be done via a Safe transaction.\n * Cannot be set to the Safe itself.\n * @param handler contract to handle fallback calls.\n */\n function setFallbackHandler(address handler) public authorized {\n internalSetFallbackHandler(handler);\n emit ChangedFallbackHandler(handler);\n }\n\n // @notice Forwards all calls to the fallback handler if set. Returns 0 if no handler is set.\n // @dev Appends the non-padded caller address to the calldata to be optionally used in the handler\n // The handler can make us of `HandlerContext.sol` to extract the address.\n // This is done because in the next call frame the `msg.sender` will be FallbackManager's address\n // and having the original caller address may enable additional verification scenarios.\n // solhint-disable-next-line payable-fallback,no-complex-fallback\n fallback() external {\n bytes32 slot = FALLBACK_HANDLER_STORAGE_SLOT;\n // solhint-disable-next-line no-inline-assembly\n assembly {\n let handler := sload(slot)\n if iszero(handler) {\n return(0, 0)\n }\n calldatacopy(0, 0, calldatasize())\n // The msg.sender address is shifted to the left by 12 bytes to remove the padding\n // Then the address without padding is stored right after the calldata\n mstore(calldatasize(), shl(96, caller()))\n // Add 20 bytes for the address appended add the end\n let success := call(gas(), handler, 0, 0, add(calldatasize(), 20), 0, 0)\n returndatacopy(0, 0, returndatasize())\n if iszero(success) {\n revert(0, returndatasize())\n }\n return(0, returndatasize())\n }\n }\n}\n"},"contracts/base/GuardManager.sol":{"content":"// SPDX-License-Identifier: LGPL-3.0-only\npragma solidity >=0.7.0 <0.9.0;\n\nimport \"../common/Enum.sol\";\nimport \"../common/SelfAuthorized.sol\";\nimport \"../interfaces/IERC165.sol\";\n\ninterface Guard is IERC165 {\n function checkTransaction(\n address to,\n uint256 value,\n bytes memory data,\n Enum.Operation operation,\n uint256 safeTxGas,\n uint256 baseGas,\n uint256 gasPrice,\n address gasToken,\n address payable refundReceiver,\n bytes memory signatures,\n address msgSender\n ) external;\n\n function checkAfterExecution(bytes32 txHash, bool success) external;\n}\n\nabstract contract BaseGuard is Guard {\n function supportsInterface(bytes4 interfaceId) external view virtual override returns (bool) {\n return\n interfaceId == type(Guard).interfaceId || // 0xe6d7a83a\n interfaceId == type(IERC165).interfaceId; // 0x01ffc9a7\n }\n}\n\n/**\n * @title Guard Manager - A contract managing transaction guards which perform pre and post-checks on Safe transactions.\n * @author Richard Meissner - @rmeissner\n */\nabstract contract GuardManager is SelfAuthorized {\n event ChangedGuard(address indexed guard);\n\n // keccak256(\"guard_manager.guard.address\")\n bytes32 internal constant GUARD_STORAGE_SLOT = 0x4a204f620c8c5ccdca3fd54d003badd85ba500436a431f0cbda4f558c93c34c8;\n\n /**\n * @dev Set a guard that checks transactions before execution\n * This can only be done via a Safe transaction.\n * ⚠️ IMPORTANT: Since a guard has full power to block Safe transaction execution,\n * a broken guard can cause a denial of service for the Safe. Make sure to carefully\n * audit the guard code and design recovery mechanisms.\n * @notice Set Transaction Guard `guard` for the Safe. Make sure you trust the guard.\n * @param guard The address of the guard to be used or the 0 address to disable the guard\n */\n function setGuard(address guard) external authorized {\n if (guard != address(0)) {\n require(Guard(guard).supportsInterface(type(Guard).interfaceId), \"GS300\");\n }\n bytes32 slot = GUARD_STORAGE_SLOT;\n // solhint-disable-next-line no-inline-assembly\n assembly {\n sstore(slot, guard)\n }\n emit ChangedGuard(guard);\n }\n\n /**\n * @dev Internal method to retrieve the current guard\n * We do not have a public method because we're short on bytecode size limit,\n * to retrieve the guard address, one can use `getStorageAt` from `StorageAccessible` contract\n * with the slot `GUARD_STORAGE_SLOT`\n * @return guard The address of the guard\n */\n function getGuard() internal view returns (address guard) {\n bytes32 slot = GUARD_STORAGE_SLOT;\n // solhint-disable-next-line no-inline-assembly\n assembly {\n guard := sload(slot)\n }\n }\n}\n"},"contracts/base/ModuleManager.sol":{"content":"// SPDX-License-Identifier: LGPL-3.0-only\npragma solidity >=0.7.0 <0.9.0;\nimport \"../common/Enum.sol\";\nimport \"../common/SelfAuthorized.sol\";\nimport \"./Executor.sol\";\n\n/**\n * @title Module Manager - A contract managing Safe modules\n * @notice Modules are extensions with unlimited access to a Safe that can be added to a Safe by its owners.\n ⚠️ WARNING: Modules are a security risk since they can execute arbitrary transactions, \n so only trusted and audited modules should be added to a Safe. A malicious module can\n completely takeover a Safe.\n * @author Stefan George - @Georgi87\n * @author Richard Meissner - @rmeissner\n */\nabstract contract ModuleManager is SelfAuthorized, Executor {\n event EnabledModule(address indexed module);\n event DisabledModule(address indexed module);\n event ExecutionFromModuleSuccess(address indexed module);\n event ExecutionFromModuleFailure(address indexed module);\n\n address internal constant SENTINEL_MODULES = address(0x1);\n\n mapping(address => address) internal modules;\n\n /**\n * @notice Setup function sets the initial storage of the contract.\n * Optionally executes a delegate ca