UNPKG

@rxflow/manhattan

Version:

Manhattan routing algorithm for ReactFlow - generates orthogonal paths with obstacle avoidance

82 lines (76 loc) 4.09 kB
function _createForOfIteratorHelper(o, allowArrayLike) { var it = typeof Symbol !== "undefined" && o[Symbol.iterator] || o["@@iterator"]; if (!it) { if (Array.isArray(o) || (it = _unsupportedIterableToArray(o)) || allowArrayLike && o && typeof o.length === "number") { if (it) o = it; var i = 0; var F = function F() {}; return { s: F, n: function n() { if (i >= o.length) return { done: true }; return { done: false, value: o[i++] }; }, e: function e(_e) { throw _e; }, f: F }; } throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } var normalCompletion = true, didErr = false, err; return { s: function s() { it = it.call(o); }, n: function n() { var step = it.next(); normalCompletion = step.done; return step; }, e: function e(_e2) { didErr = true; err = _e2; }, f: function f() { try { if (!normalCompletion && it.return != null) it.return(); } finally { if (didErr) throw err; } } }; } function _unsupportedIterableToArray(o, minLen) { if (!o) return; if (typeof o === "string") return _arrayLikeToArray(o, minLen); var n = Object.prototype.toString.call(o).slice(8, -1); if (n === "Object" && o.constructor) n = o.constructor.name; if (n === "Map" || n === "Set") return Array.from(o); if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray(o, minLen); } function _arrayLikeToArray(arr, len) { if (len == null || len > arr.length) len = arr.length; for (var i = 0, arr2 = new Array(len); i < len; i++) arr2[i] = arr[i]; return arr2; } import { Point } from "../geometry"; /** * Parse SVG path string to extract points * Simplified parser that handles M, L, Q commands */ export function parseSVGPath(pathString) { var points = []; var commands = pathString.match(/[MLQ][^MLQ]*/g); if (!commands) return points; var _iterator = _createForOfIteratorHelper(commands), _step; try { for (_iterator.s(); !(_step = _iterator.n()).done;) { var command = _step.value; var type = command[0]; var coords = command.slice(1).trim().split(/[\s,]+/).map(Number); if (type === 'M' || type === 'L') { // MoveTo or LineTo: x, y if (coords.length >= 2) { points.push(new Point(coords[0], coords[1])); } } else if (type === 'Q') { // Quadratic Bezier: cx, cy, x, y // We sample points along the curve for collision detection if (coords.length >= 4) { var prevPoint = points[points.length - 1]; if (prevPoint) { var cx = coords[0]; var cy = coords[1]; var x = coords[2]; var y = coords[3]; // Sample 10 points along the bezier curve for better accuracy // This ensures we don't miss intersections with obstacles for (var t = 0.1; t <= 1; t += 0.1) { var bx = (1 - t) * (1 - t) * prevPoint.x + 2 * (1 - t) * t * cx + t * t * x; var by = (1 - t) * (1 - t) * prevPoint.y + 2 * (1 - t) * t * cy + t * t * y; points.push(new Point(bx, by)); } } } } } } catch (err) { _iterator.e(err); } finally { _iterator.f(); } return points; } /** * Simplify path by removing collinear intermediate points */ export function simplifyPath(points) { if (points.length <= 2) { return points; } var simplified = [points[0]]; for (var i = 1; i < points.length - 1; i++) { var prev = simplified[simplified.length - 1]; var current = points[i]; var next = points[i + 1]; // Check if current point is collinear with prev and next var isHorizontalLine = prev.y === current.y && current.y === next.y; var isVerticalLine = prev.x === current.x && current.x === next.x; // Only keep the point if it's not collinear (i.e., it's a corner) if (!isHorizontalLine && !isVerticalLine) { simplified.push(current); } } // Always add the last point simplified.push(points[points.length - 1]); return simplified; }