@ruvector/sona
Version:
Self-Optimizing Neural Architecture (SONA) - Runtime-adaptive learning with LoRA, EWC++, and ReasoningBank for LLM routers and AI systems. Sub-millisecond learning overhead, WASM and Node.js support.
380 lines (268 loc) • 9.63 kB
Markdown
# @ruvector/sona
**Self-Optimizing Neural Architecture (SONA)** - Node.js bindings for adaptive learning with ReasoningBank.
SONA is a cutting-edge adaptive learning system that combines:
- **Micro-LoRA** (rank 1-2): Ultra-fast inference-time adaptation
- **Base LoRA** (rank 8+): Deeper background learning
- **EWC++**: Catastrophic forgetting prevention
- **ReasoningBank**: Pattern extraction and storage
- **Dual Learning Loops**: Instant (<1ms) and background (periodic) learning
## Features
- 🚀 **Instant Adaptation**: Sub-millisecond learning updates during inference
- 🧠 **Pattern Recognition**: Automatic extraction and clustering of learned patterns
- 🔄 **Dual Learning Loops**: Balance speed and depth with instant and background learning
- 💾 **Memory Preservation**: EWC++ prevents catastrophic forgetting
- ⚡ **High Performance**: Native Rust implementation with SIMD optimizations
- 🎯 **Production Ready**: Used in large-scale LLM deployments
## Installation
```bash
npm install @ruvector/sona
```
## Quick Start
```typescript
import { SonaEngine } from '@ruvector/sona';
// Create engine with hidden dimension
const engine = new SonaEngine(512);
// Or with custom configuration
const engine = SonaEngine.withConfig({
hiddenDim: 512,
microLoraRank: 2,
baseLoraRank: 16,
microLoraLr: 0.002,
qualityThreshold: 0.7,
});
// Start a trajectory
const builder = engine.beginTrajectory(queryEmbedding);
// Record inference steps
builder.addStep(activations, attentionWeights, 0.8);
builder.addStep(activations2, attentionWeights2, 0.9);
// Complete trajectory
engine.endTrajectory(builder, 0.85); // quality score
// Apply learned transformations
const output = engine.applyMicroLora(input);
// Force learning cycle
const result = engine.forceLearn();
console.log(result);
// Find similar patterns
const patterns = engine.findPatterns(queryEmbedding, 5);
patterns.forEach(p => {
console.log(`Pattern ${p.id}: quality=${p.avgQuality}, size=${p.clusterSize}`);
});
```
## API Reference
### SonaEngine
Main class for adaptive learning.
#### Constructor
```typescript
new SonaEngine(hiddenDim: number)
```
Create a new SONA engine with default configuration.
**Parameters:**
- `hiddenDim`: Hidden dimension size (e.g., 256, 512, 1024)
#### Static Methods
##### `SonaEngine.withConfig(config: SonaConfig): SonaEngine`
Create engine with custom configuration.
**Configuration Options:**
```typescript
interface SonaConfig {
hiddenDim: number; // Required: Hidden dimension
embeddingDim?: number; // Default: hiddenDim
microLoraRank?: number; // Default: 1 (range: 1-2)
baseLoraRank?: number; // Default: 8
microLoraLr?: number; // Default: 0.001
baseLoraLr?: number; // Default: 0.0001
ewcLambda?: number; // Default: 1000.0
patternClusters?: number; // Default: 50
trajectoryCapacity?: number; // Default: 10000
backgroundIntervalMs?: number; // Default: 3600000 (1 hour)
qualityThreshold?: number; // Default: 0.5
enableSimd?: boolean; // Default: true
}
```
#### Instance Methods
##### `beginTrajectory(queryEmbedding: Float64Array | number[]): TrajectoryBuilder`
Start recording a new inference trajectory.
##### `endTrajectory(builder: TrajectoryBuilder, quality: number): void`
Complete and submit trajectory for learning.
**Parameters:**
- `builder`: TrajectoryBuilder instance
- `quality`: Final quality score [0.0, 1.0]
##### `applyMicroLora(input: Float64Array | number[]): Float64Array`
Apply micro-LoRA transformation (instant learning).
##### `applyBaseLora(layerIdx: number, input: Float64Array | number[]): Float64Array`
Apply base-LoRA transformation to specific layer.
##### `tick(): string | null`
Run background learning cycle if due. Returns status message if executed.
##### `forceLearn(): string`
Force immediate background learning cycle.
##### `flush(): void`
Flush instant loop updates.
##### `findPatterns(queryEmbedding: Float64Array | number[], k: number): LearnedPattern[]`
Find k most similar learned patterns.
##### `getStats(): string`
Get engine statistics as JSON string.
##### `setEnabled(enabled: boolean): void`
Enable or disable learning.
##### `isEnabled(): boolean`
Check if engine is enabled.
### TrajectoryBuilder
Builder for recording inference trajectories.
#### Methods
##### `addStep(activations: Float64Array | number[], attentionWeights: Float64Array | number[], reward: number): void`
Add a step to the trajectory.
**Parameters:**
- `activations`: Layer activations
- `attentionWeights`: Attention weights
- `reward`: Reward signal for this step
##### `setRoute(route: string): void`
Set model route identifier.
##### `addContext(contextId: string): void`
Add context ID to trajectory.
### LearnedPattern
Represents a learned pattern from trajectory clustering.
```typescript
interface LearnedPattern {
id: string;
centroid: Float64Array;
clusterSize: number;
totalWeight: number;
avgQuality: number;
createdAt: string;
lastAccessed: string;
accessCount: number;
patternType: PatternType;
}
```
### PatternType
Pattern classification enumeration.
```typescript
enum PatternType {
General = 'General',
Reasoning = 'Reasoning',
Factual = 'Factual',
Creative = 'Creative',
CodeGen = 'CodeGen',
Conversational = 'Conversational',
}
```
## Advanced Usage
### LLM Integration Example
```typescript
import { SonaEngine } from '@ruvector/sona';
class AdaptiveLLM {
private sona: SonaEngine;
constructor() {
this.sona = SonaEngine.withConfig({
hiddenDim: 4096,
microLoraRank: 2,
baseLoraRank: 16,
microLoraLr: 0.002,
qualityThreshold: 0.7,
backgroundIntervalMs: 1800000, // 30 minutes
});
}
async generate(prompt: string): Promise<string> {
const embedding = await this.embed(prompt);
const builder = this.sona.beginTrajectory(embedding);
// Generate with SONA-enhanced layers
const output = await this.runInference(builder);
// Calculate quality score
const quality = this.assessQuality(output);
// Submit trajectory for learning
this.sona.endTrajectory(builder, quality);
// Periodic background learning
const status = this.sona.tick();
if (status) {
console.log('Background learning:', status);
}
return output;
}
private async runInference(builder: TrajectoryBuilder): Promise<string> {
let output = '';
for (const layer of this.layers) {
// Get layer activations
const activations = layer.forward(/* ... */);
const attention = layer.getAttention();
// Apply micro-LoRA enhancement
const enhanced = this.sona.applyMicroLora(activations);
// Record step
const reward = this.calculateReward(enhanced);
builder.addStep(activations, attention, reward);
// Continue generation with enhanced activations
output += this.decode(enhanced);
}
return output;
}
}
```
### Pattern-Based Routing
```typescript
// Find similar patterns for routing decisions
const patterns = engine.findPatterns(queryEmbedding, 3);
if (patterns.length > 0) {
const topPattern = patterns[0];
if (topPattern.patternType === 'CodeGen' && topPattern.avgQuality > 0.8) {
// Route to specialized code generation model
await routeToCodeModel(query);
} else if (topPattern.patternType === 'Reasoning') {
// Use chain-of-thought prompting
await useCoTPrompting(query);
}
}
```
### Performance Monitoring
```typescript
// Get statistics
const stats = JSON.parse(engine.getStats());
console.log(`
Trajectories buffered: ${stats.trajectories_buffered}
Patterns learned: ${stats.patterns_learned}
Micro-LoRA updates: ${stats.micro_updates}
Background cycles: ${stats.background_cycles}
`);
// Force learning when needed
if (stats.trajectories_buffered > 100) {
const result = engine.forceLearn();
console.log('Forced learning:', result);
}
```
## Performance Characteristics
- **Micro-LoRA Application**: <1ms per forward pass
- **Trajectory Recording**: ~10μs per step
- **Background Learning**: Depends on buffer size (typically 100-500ms for 1000 trajectories)
- **Pattern Search**: O(k * n) where k = number of results, n = total patterns
- **Memory Usage**: ~50MB base + ~1KB per trajectory + ~10KB per pattern
## Architecture
SONA implements a dual-loop learning architecture:
1. **Instant Loop** (<1ms):
- Accumulates micro-LoRA gradients during inference
- Updates on every trajectory
- Rank-1 or rank-2 LoRA for minimal overhead
2. **Background Loop** (periodic):
- Extracts patterns via k-means clustering
- Updates base LoRA weights
- Applies EWC++ for stability
- Prunes low-quality patterns
## Requirements
- Node.js >= 16
- Native bindings for your platform (automatically installed)
## Supported Platforms
- Linux (x64, ARM64, ARM)
- macOS (x64, ARM64, Universal)
- Windows (x64, ARM64)
- FreeBSD (x64)
## License
MIT OR Apache-2.0
## Links
- [GitHub Repository](https://github.com/ruvnet/ruvector)
- [Documentation](https://github.com/ruvnet/ruvector/tree/main/crates/sona)
- [rUvector Project](https://github.com/ruvnet/ruvector)
## Contributing
Contributions are welcome! Please see the main rUvector repository for contribution guidelines.
## Acknowledgments
SONA is part of the rUvector project, building on research in:
- Low-Rank Adaptation (LoRA)
- Elastic Weight Consolidation (EWC)
- Continual Learning
- Neural Architecture Search
---
Built with ❤️ by the rUv Team