@ruvector/attention
Version:
High-performance attention mechanisms for Node.js
214 lines (158 loc) • 5.82 kB
Markdown
# @ruvector/attention
High-performance attention mechanisms for Node.js, powered by Rust.
## Features
- **Scaled Dot-Product Attention**: Classic attention mechanism with optional scaling
- **Multi-Head Attention**: Parallel attention heads for richer representations
- **Flash Attention**: Memory-efficient attention with block-wise computation
- **Linear Attention**: O(N) complexity attention using kernel approximations
- **Hyperbolic Attention**: Attention in hyperbolic space for hierarchical data
- **Mixture-of-Experts (MoE) Attention**: Dynamic expert routing for specialized attention
## Installation
```bash
npm install @ruvector/attention
```
## Usage
### Basic Dot-Product Attention
```javascript
const { DotProductAttention } = require('@ruvector/attention');
const attention = new DotProductAttention(512, 1.0);
const query = new Float32Array([/* ... */]);
const keys = [new Float32Array([/* ... */])];
const values = [new Float32Array([/* ... */])];
const output = attention.compute(query, keys, values);
```
### Multi-Head Attention
```javascript
const { MultiHeadAttention } = require('@ruvector/attention');
const mha = new MultiHeadAttention(512, 8); // 512 dim, 8 heads
const output = mha.compute(query, keys, values);
// Async version for large computations
const outputAsync = await mha.computeAsync(query, keys, values);
```
### Flash Attention
```javascript
const { FlashAttention } = require('@ruvector/attention');
const flash = new FlashAttention(512, 64); // 512 dim, 64 block size
const output = flash.compute(query, keys, values);
```
### Hyperbolic Attention
```javascript
const { HyperbolicAttention } = require('@ruvector/attention');
const hyperbolic = new HyperbolicAttention(512, -1.0); // negative curvature
const output = hyperbolic.compute(query, keys, values);
```
### Mixture-of-Experts Attention
```javascript
const { MoEAttention } = require('@ruvector/attention');
const moe = new MoEAttention({
dim: 512,
numExperts: 8,
topK: 2,
expertCapacity: 1.25
});
const output = moe.compute(query, keys, values);
const expertUsage = moe.getExpertUsage();
```
### Training
```javascript
const { Trainer, AdamOptimizer } = require('@ruvector/attention');
// Configure training
const trainer = new Trainer({
learningRate: 0.001,
batchSize: 32,
numEpochs: 100,
weightDecay: 0.01,
gradientClip: 1.0,
warmupSteps: 1000
});
// Training step
const loss = trainer.trainStep(inputs, targets);
// Get metrics
const metrics = trainer.getMetrics();
console.log(`Loss: ${metrics.loss}, LR: ${metrics.learningRate}`);
// Custom optimizer
const optimizer = new AdamOptimizer(0.001, 0.9, 0.999, 1e-8);
const updatedParams = optimizer.step(gradients);
```
### Batch Processing
```javascript
const { BatchProcessor, parallelAttentionCompute } = require('@ruvector/attention');
// Batch processor for efficient batching
const processor = new BatchProcessor({
batchSize: 32,
numWorkers: 4,
prefetch: true
});
const results = await processor.processBatch(queries, keys, values);
const throughput = processor.getThroughput();
// Parallel computation with automatic worker management
const results = await parallelAttentionCompute(
'multi-head',
queries,
keys,
values,
4 // number of workers
);
```
## API Reference
### Classes
#### `DotProductAttention`
- `constructor(dim: number, scale?: number)`
- `compute(query: Float32Array, keys: Float32Array[], values: Float32Array[]): Float32Array`
#### `MultiHeadAttention`
- `constructor(dim: number, numHeads: number)`
- `compute(query: Float32Array, keys: Float32Array[], values: Float32Array[]): Float32Array`
- `computeAsync(query: Float32Array, keys: Float32Array[], values: Float32Array[]): Promise<Float32Array>`
#### `FlashAttention`
- `constructor(dim: number, blockSize: number)`
- `compute(query: Float32Array, keys: Float32Array[], values: Float32Array[]): Float32Array`
#### `LinearAttention`
- `constructor(dim: number, numFeatures: number)`
- `compute(query: Float32Array, keys: Float32Array[], values: Float32Array[]): Float32Array`
#### `HyperbolicAttention`
- `constructor(dim: number, curvature: number)`
- `compute(query: Float32Array, keys: Float32Array[], values: Float32Array[]): Float32Array`
#### `MoEAttention`
- `constructor(config: MoEConfig)`
- `compute(query: Float32Array, keys: Float32Array[], values: Float32Array[]): Float32Array`
- `getExpertUsage(): number[]`
#### `Trainer`
- `constructor(config: TrainingConfig)`
- `trainStep(inputs: Float32Array[], targets: Float32Array[]): number`
- `trainStepAsync(inputs: Float32Array[], targets: Float32Array[]): Promise<number>`
- `getMetrics(): TrainingMetrics`
#### `AdamOptimizer`
- `constructor(learningRate: number, beta1?: number, beta2?: number, epsilon?: number)`
- `step(gradients: Float32Array[]): Float32Array[]`
- `getLearningRate(): number`
- `setLearningRate(lr: number): void`
#### `BatchProcessor`
- `constructor(config: BatchConfig)`
- `processBatch(queries: Float32Array[], keys: Float32Array[][], values: Float32Array[][]): Promise<Float32Array[]>`
- `getThroughput(): number`
### Functions
#### `parallelAttentionCompute`
```typescript
function parallelAttentionCompute(
attentionType: string,
queries: Float32Array[],
keys: Float32Array[][],
values: Float32Array[][],
numWorkers?: number
): Promise<Float32Array[]>
```
#### `version`
Returns the package version string.
## Performance
This package uses Rust under the hood for optimal performance:
- Zero-copy data transfer where possible
- SIMD optimizations for vector operations
- Multi-threaded batch processing
- Memory-efficient attention mechanisms
## Platform Support
Pre-built binaries are provided for:
- macOS (x64, ARM64)
- Linux (x64, ARM64, musl)
- Windows (x64, ARM64)
## License
MIT OR Apache-2.0