UNPKG

@reactodia/workspace

Version:

Reactodia Workspace -- library for visual interaction with graphs in a form of a diagram.

297 lines (269 loc) 10 kB
/* * SHA-256 implementation adopted from https://github.com/brillout/forge-sha256 * Commit: 6ad5535e0be2385fdc53f1d9ce2b172365c70333 * Date: Jul 5, 2017 * * The MIT License (MIT) * Copyright (c) 2015-2017 Romuald Brillout and contributors * (See THIRDPARTY.md for the full license text.) * * With modifications (static typing and replaced buffer implementation) * made under LGPL-2.1-or-later (see NOTICE.md). */ import { CircularBuffer } from './circularBuffer'; export class Sha256 { private initialized = false; // sha-256 padding bytes not initialized yet private _padding!: Uint8Array; // table of constants private _k!: Uint32Array; /** * Initializes the constant tables. */ private initialize() { if (this.initialized) { return; } // create padding this._padding = new Uint8Array(64); this._padding[0] = 1 << 7; // create K table for SHA-256 this._k = new Uint32Array([ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, ]); // now initialized this.initialized = true; } /** * Creates a SHA-256 message digest object. * * @return a message digest object. */ create(): Sha256Digest { // do initialization as necessary this.initialize(); // message digest object return new Sha256Digest(this._padding, this._k); } } export interface HashDigest { start(): void; update(bytes: Uint8Array): void; digest(): Uint8Array; } class Sha256Digest implements HashDigest { readonly blockLength = 64; readonly digestLength = 32; // 56-bit length of message so far (does not including padding) private messageLength = 0; // true 64-bit message length as two 32-bit ints private messageLength64: [number, number] = [0, 0]; // SHA-256 state contains eight 32-bit integers private _state!: Sha256State; // input buffer private _input!: CircularBuffer; // used for word storage private _w = Array.from({length: 64}, () => 0); constructor( private readonly _padding: Uint8Array, private readonly _k: Uint32Array ) { // start digest automatically for first time this.start(); } /** * Starts the digest. */ start() { this.messageLength = 0; this.messageLength64 = [0, 0]; this._input = new CircularBuffer(); this._state = { h0: 0x6A09E667, h1: 0xBB67AE85, h2: 0x3C6EF372, h3: 0xA54FF53A, h4: 0x510E527F, h5: 0x9B05688C, h6: 0x1F83D9AB, h7: 0x5BE0CD19, }; } /** * Updates the digest with the given message input. * * @param bytes the binary data to update with. */ update(bytes: Uint8Array): void { // update message length this.messageLength += bytes.length; this.messageLength64[0] += (bytes.length / 0x100000000) >>> 0; this.messageLength64[1] += bytes.length >>> 0; // add bytes to input buffer this._input.writeBytes(bytes); // process bytes _update(this._state, this._w, this._input, this._k); } /** * Produces the digest. * * @return a byte buffer containing the digest value. */ digest(): Uint8Array { // Note: Here we copy the remaining bytes in the input buffer and // add the appropriate SHA-256 padding. Then we do the final update // on a copy of the state so that if the user wants to get // intermediate digests they can do so. // Determine the number of bytes that must be added to the message // to ensure its length is congruent to 448 mod 512. In other words, // the data to be digested must be a multiple of 512 bits (or 128 bytes). // This data includes the message, some padding, and the length of the // message. Since the length of the message will be encoded as 8 bytes (64 // bits), that means that the last segment of the data must have 56 bytes // (448 bits) of message and padding. Therefore, the length of the message // plus the padding must be congruent to 448 mod 512 because // 512 - 128 = 448. // In order to fill up the message length it must be filled with // padding that begins with 1 bit followed by all 0 bits. Padding // must *always* be present, so if the message length is already // congruent to 448 mod 512, then 512 padding bits must be added. // 512 bits == 64 bytes, 448 bits == 56 bytes, 64 bits = 8 bytes // _padding starts with 1 byte with first bit is set in it which // is byte value 128, then there may be up to 63 other pad bytes const padBytes = new CircularBuffer(); padBytes.ensureFreeCapacity(this._input.length); for (const span of this._input.peekBytes()) { padBytes.writeBytes(span); } // 64 - (remaining msg + 8 bytes msg length) mod 64 padBytes.writeBytes(this._padding, 64 - ((this.messageLength64[1] + 8) & 0x3F)); // Now append length of the message. The length is appended in bits // as a 64-bit number in big-endian order. Since we store the length in // bytes, we must multiply the 64-bit length by 8 (or left shift by 3). padBytes.writeInt32( (this.messageLength64[0] << 3) | (this.messageLength64[0] >>> 28) ); padBytes.writeInt32(this.messageLength64[1] << 3); const s2: Sha256State = {...this._state}; _update(s2, this._w, padBytes, this._k); const result = new CircularBuffer(this.digestLength); result.writeInt32(s2.h0); result.writeInt32(s2.h1); result.writeInt32(s2.h2); result.writeInt32(s2.h3); result.writeInt32(s2.h4); result.writeInt32(s2.h5); result.writeInt32(s2.h6); result.writeInt32(s2.h7); return result.readBytes(result.length); } } interface Sha256State { h0: number, h1: number, h2: number, h3: number, h4: number, h5: number, h6: number, h7: number, } /** * Updates a SHA-256 state with the given byte buffer. * * @param s the SHA-256 state to update. * @param w the array to use to store words. * @param bytes the byte buffer to update with. * @param _k SHA-256 coefficients (readonly) */ function _update(s: Sha256State, w: number[], bytes: CircularBuffer, _k: Uint32Array) { // consume 512 bit (64 byte) chunks let t1: number, t2: number, s0: number, s1: number, ch: number, maj: number, i: number, a: number, b: number, c: number, d: number, e: number, f: number, g: number, h: number; let len = bytes.length; while (len >= 64) { // the w array will be populated with sixteen 32-bit big-endian words // and then extended into 64 32-bit words according to SHA-256 for (i = 0; i < 16; ++i) { w[i] = bytes.readInt32(); } for (; i < 64; ++i) { // XOR word 2 words ago rot right 17, rot right 19, shft right 10 t1 = w[i - 2]; t1 = ((t1 >>> 17) | (t1 << 15)) ^ ((t1 >>> 19) | (t1 << 13)) ^ (t1 >>> 10); // XOR word 15 words ago rot right 7, rot right 18, shft right 3 t2 = w[i - 15]; t2 = ((t2 >>> 7) | (t2 << 25)) ^ ((t2 >>> 18) | (t2 << 14)) ^ (t2 >>> 3); // sum(t1, word 7 ago, t2, word 16 ago) modulo 2^32 w[i] = (t1 + w[i - 7] + t2 + w[i - 16]) | 0; } // initialize hash value for this chunk a = s.h0; b = s.h1; c = s.h2; d = s.h3; e = s.h4; f = s.h5; g = s.h6; h = s.h7; // round function for (i = 0; i < 64; ++i) { // Sum1(e) s1 = ((e >>> 6) | (e << 26)) ^ ((e >>> 11) | (e << 21)) ^ ((e >>> 25) | (e << 7)); // Ch(e, f, g) (optimized the same way as SHA-1) ch = g ^ (e & (f ^ g)); // Sum0(a) s0 = ((a >>> 2) | (a << 30)) ^ ((a >>> 13) | (a << 19)) ^ ((a >>> 22) | (a << 10)); // Maj(a, b, c) (optimized the same way as SHA-1) maj = (a & b) | (c & (a ^ b)); // main algorithm t1 = h + s1 + ch + _k[i] + w[i]; t2 = s0 + maj; h = g; g = f; f = e; e = (d + t1) | 0; d = c; c = b; b = a; a = (t1 + t2) | 0; } // update hash state s.h0 = (s.h0 + a) | 0; s.h1 = (s.h1 + b) | 0; s.h2 = (s.h2 + c) | 0; s.h3 = (s.h3 + d) | 0; s.h4 = (s.h4 + e) | 0; s.h5 = (s.h5 + f) | 0; s.h6 = (s.h6 + g) | 0; s.h7 = (s.h7 + h) | 0; len -= 64; } }