@react-three/lightmap
Version:
In-browser lightmap/AO baker for react-three-fiber and ThreeJS
1,404 lines (1,150 loc) • 107 kB
JavaScript
'use strict';
Object.defineProperty(exports, '__esModule', { value: true });
function _interopDefault (ex) { return (ex && (typeof ex === 'object') && 'default' in ex) ? ex['default'] : ex; }
var React = require('react');
var React__default = _interopDefault(React);
var THREE = require('three');
var potpack = _interopDefault(require('potpack'));
var fiber = require('@react-three/fiber');
function asyncGeneratorStep(gen, resolve, reject, _next, _throw, key, arg) {
try {
var info = gen[key](arg);
var value = info.value;
} catch (error) {
reject(error);
return;
}
if (info.done) {
resolve(value);
} else {
Promise.resolve(value).then(_next, _throw);
}
}
function _asyncToGenerator(fn) {
return function () {
var self = this,
args = arguments;
return new Promise(function (resolve, reject) {
var gen = fn.apply(self, args);
function _next(value) {
asyncGeneratorStep(gen, resolve, reject, _next, _throw, "next", value);
}
function _throw(err) {
asyncGeneratorStep(gen, resolve, reject, _next, _throw, "throw", err);
}
_next(undefined);
});
};
}
function _extends() {
_extends = Object.assign || function (target) {
for (var i = 1; i < arguments.length; i++) {
var source = arguments[i];
for (var key in source) {
if (Object.prototype.hasOwnProperty.call(source, key)) {
target[key] = source[key];
}
}
}
return target;
};
return _extends.apply(this, arguments);
}
function _objectWithoutPropertiesLoose(source, excluded) {
if (source == null) return {};
var target = {};
var sourceKeys = Object.keys(source);
var key, i;
for (i = 0; i < sourceKeys.length; i++) {
key = sourceKeys[i];
if (excluded.indexOf(key) >= 0) continue;
target[key] = source[key];
}
return target;
}
function _unsupportedIterableToArray(o, minLen) {
if (!o) return;
if (typeof o === "string") return _arrayLikeToArray(o, minLen);
var n = Object.prototype.toString.call(o).slice(8, -1);
if (n === "Object" && o.constructor) n = o.constructor.name;
if (n === "Map" || n === "Set") return Array.from(o);
if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray(o, minLen);
}
function _arrayLikeToArray(arr, len) {
if (len == null || len > arr.length) len = arr.length;
for (var i = 0, arr2 = new Array(len); i < len; i++) arr2[i] = arr[i];
return arr2;
}
function _createForOfIteratorHelperLoose(o, allowArrayLike) {
var it;
if (typeof Symbol === "undefined" || o[Symbol.iterator] == null) {
if (Array.isArray(o) || (it = _unsupportedIterableToArray(o)) || allowArrayLike && o && typeof o.length === "number") {
if (it) o = it;
var i = 0;
return function () {
if (i >= o.length) return {
done: true
};
return {
done: false,
value: o[i++]
};
};
}
throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.");
}
it = o[Symbol.iterator]();
return it.next.bind(it);
}
function createCommonjsModule(fn, module) {
return module = { exports: {} }, fn(module, module.exports), module.exports;
}
var runtime_1 = createCommonjsModule(function (module) {
/**
* Copyright (c) 2014-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
var runtime = (function (exports) {
var Op = Object.prototype;
var hasOwn = Op.hasOwnProperty;
var undefined$1; // More compressible than void 0.
var $Symbol = typeof Symbol === "function" ? Symbol : {};
var iteratorSymbol = $Symbol.iterator || "@@iterator";
var asyncIteratorSymbol = $Symbol.asyncIterator || "@@asyncIterator";
var toStringTagSymbol = $Symbol.toStringTag || "@@toStringTag";
function define(obj, key, value) {
Object.defineProperty(obj, key, {
value: value,
enumerable: true,
configurable: true,
writable: true
});
return obj[key];
}
try {
// IE 8 has a broken Object.defineProperty that only works on DOM objects.
define({}, "");
} catch (err) {
define = function(obj, key, value) {
return obj[key] = value;
};
}
function wrap(innerFn, outerFn, self, tryLocsList) {
// If outerFn provided and outerFn.prototype is a Generator, then outerFn.prototype instanceof Generator.
var protoGenerator = outerFn && outerFn.prototype instanceof Generator ? outerFn : Generator;
var generator = Object.create(protoGenerator.prototype);
var context = new Context(tryLocsList || []);
// The ._invoke method unifies the implementations of the .next,
// .throw, and .return methods.
generator._invoke = makeInvokeMethod(innerFn, self, context);
return generator;
}
exports.wrap = wrap;
// Try/catch helper to minimize deoptimizations. Returns a completion
// record like context.tryEntries[i].completion. This interface could
// have been (and was previously) designed to take a closure to be
// invoked without arguments, but in all the cases we care about we
// already have an existing method we want to call, so there's no need
// to create a new function object. We can even get away with assuming
// the method takes exactly one argument, since that happens to be true
// in every case, so we don't have to touch the arguments object. The
// only additional allocation required is the completion record, which
// has a stable shape and so hopefully should be cheap to allocate.
function tryCatch(fn, obj, arg) {
try {
return { type: "normal", arg: fn.call(obj, arg) };
} catch (err) {
return { type: "throw", arg: err };
}
}
var GenStateSuspendedStart = "suspendedStart";
var GenStateSuspendedYield = "suspendedYield";
var GenStateExecuting = "executing";
var GenStateCompleted = "completed";
// Returning this object from the innerFn has the same effect as
// breaking out of the dispatch switch statement.
var ContinueSentinel = {};
// Dummy constructor functions that we use as the .constructor and
// .constructor.prototype properties for functions that return Generator
// objects. For full spec compliance, you may wish to configure your
// minifier not to mangle the names of these two functions.
function Generator() {}
function GeneratorFunction() {}
function GeneratorFunctionPrototype() {}
// This is a polyfill for %IteratorPrototype% for environments that
// don't natively support it.
var IteratorPrototype = {};
IteratorPrototype[iteratorSymbol] = function () {
return this;
};
var getProto = Object.getPrototypeOf;
var NativeIteratorPrototype = getProto && getProto(getProto(values([])));
if (NativeIteratorPrototype &&
NativeIteratorPrototype !== Op &&
hasOwn.call(NativeIteratorPrototype, iteratorSymbol)) {
// This environment has a native %IteratorPrototype%; use it instead
// of the polyfill.
IteratorPrototype = NativeIteratorPrototype;
}
var Gp = GeneratorFunctionPrototype.prototype =
Generator.prototype = Object.create(IteratorPrototype);
GeneratorFunction.prototype = Gp.constructor = GeneratorFunctionPrototype;
GeneratorFunctionPrototype.constructor = GeneratorFunction;
GeneratorFunction.displayName = define(
GeneratorFunctionPrototype,
toStringTagSymbol,
"GeneratorFunction"
);
// Helper for defining the .next, .throw, and .return methods of the
// Iterator interface in terms of a single ._invoke method.
function defineIteratorMethods(prototype) {
["next", "throw", "return"].forEach(function(method) {
define(prototype, method, function(arg) {
return this._invoke(method, arg);
});
});
}
exports.isGeneratorFunction = function(genFun) {
var ctor = typeof genFun === "function" && genFun.constructor;
return ctor
? ctor === GeneratorFunction ||
// For the native GeneratorFunction constructor, the best we can
// do is to check its .name property.
(ctor.displayName || ctor.name) === "GeneratorFunction"
: false;
};
exports.mark = function(genFun) {
if (Object.setPrototypeOf) {
Object.setPrototypeOf(genFun, GeneratorFunctionPrototype);
} else {
genFun.__proto__ = GeneratorFunctionPrototype;
define(genFun, toStringTagSymbol, "GeneratorFunction");
}
genFun.prototype = Object.create(Gp);
return genFun;
};
// Within the body of any async function, `await x` is transformed to
// `yield regeneratorRuntime.awrap(x)`, so that the runtime can test
// `hasOwn.call(value, "__await")` to determine if the yielded value is
// meant to be awaited.
exports.awrap = function(arg) {
return { __await: arg };
};
function AsyncIterator(generator, PromiseImpl) {
function invoke(method, arg, resolve, reject) {
var record = tryCatch(generator[method], generator, arg);
if (record.type === "throw") {
reject(record.arg);
} else {
var result = record.arg;
var value = result.value;
if (value &&
typeof value === "object" &&
hasOwn.call(value, "__await")) {
return PromiseImpl.resolve(value.__await).then(function(value) {
invoke("next", value, resolve, reject);
}, function(err) {
invoke("throw", err, resolve, reject);
});
}
return PromiseImpl.resolve(value).then(function(unwrapped) {
// When a yielded Promise is resolved, its final value becomes
// the .value of the Promise<{value,done}> result for the
// current iteration.
result.value = unwrapped;
resolve(result);
}, function(error) {
// If a rejected Promise was yielded, throw the rejection back
// into the async generator function so it can be handled there.
return invoke("throw", error, resolve, reject);
});
}
}
var previousPromise;
function enqueue(method, arg) {
function callInvokeWithMethodAndArg() {
return new PromiseImpl(function(resolve, reject) {
invoke(method, arg, resolve, reject);
});
}
return previousPromise =
// If enqueue has been called before, then we want to wait until
// all previous Promises have been resolved before calling invoke,
// so that results are always delivered in the correct order. If
// enqueue has not been called before, then it is important to
// call invoke immediately, without waiting on a callback to fire,
// so that the async generator function has the opportunity to do
// any necessary setup in a predictable way. This predictability
// is why the Promise constructor synchronously invokes its
// executor callback, and why async functions synchronously
// execute code before the first await. Since we implement simple
// async functions in terms of async generators, it is especially
// important to get this right, even though it requires care.
previousPromise ? previousPromise.then(
callInvokeWithMethodAndArg,
// Avoid propagating failures to Promises returned by later
// invocations of the iterator.
callInvokeWithMethodAndArg
) : callInvokeWithMethodAndArg();
}
// Define the unified helper method that is used to implement .next,
// .throw, and .return (see defineIteratorMethods).
this._invoke = enqueue;
}
defineIteratorMethods(AsyncIterator.prototype);
AsyncIterator.prototype[asyncIteratorSymbol] = function () {
return this;
};
exports.AsyncIterator = AsyncIterator;
// Note that simple async functions are implemented on top of
// AsyncIterator objects; they just return a Promise for the value of
// the final result produced by the iterator.
exports.async = function(innerFn, outerFn, self, tryLocsList, PromiseImpl) {
if (PromiseImpl === void 0) PromiseImpl = Promise;
var iter = new AsyncIterator(
wrap(innerFn, outerFn, self, tryLocsList),
PromiseImpl
);
return exports.isGeneratorFunction(outerFn)
? iter // If outerFn is a generator, return the full iterator.
: iter.next().then(function(result) {
return result.done ? result.value : iter.next();
});
};
function makeInvokeMethod(innerFn, self, context) {
var state = GenStateSuspendedStart;
return function invoke(method, arg) {
if (state === GenStateExecuting) {
throw new Error("Generator is already running");
}
if (state === GenStateCompleted) {
if (method === "throw") {
throw arg;
}
// Be forgiving, per 25.3.3.3.3 of the spec:
// https://people.mozilla.org/~jorendorff/es6-draft.html#sec-generatorresume
return doneResult();
}
context.method = method;
context.arg = arg;
while (true) {
var delegate = context.delegate;
if (delegate) {
var delegateResult = maybeInvokeDelegate(delegate, context);
if (delegateResult) {
if (delegateResult === ContinueSentinel) continue;
return delegateResult;
}
}
if (context.method === "next") {
// Setting context._sent for legacy support of Babel's
// function.sent implementation.
context.sent = context._sent = context.arg;
} else if (context.method === "throw") {
if (state === GenStateSuspendedStart) {
state = GenStateCompleted;
throw context.arg;
}
context.dispatchException(context.arg);
} else if (context.method === "return") {
context.abrupt("return", context.arg);
}
state = GenStateExecuting;
var record = tryCatch(innerFn, self, context);
if (record.type === "normal") {
// If an exception is thrown from innerFn, we leave state ===
// GenStateExecuting and loop back for another invocation.
state = context.done
? GenStateCompleted
: GenStateSuspendedYield;
if (record.arg === ContinueSentinel) {
continue;
}
return {
value: record.arg,
done: context.done
};
} else if (record.type === "throw") {
state = GenStateCompleted;
// Dispatch the exception by looping back around to the
// context.dispatchException(context.arg) call above.
context.method = "throw";
context.arg = record.arg;
}
}
};
}
// Call delegate.iterator[context.method](context.arg) and handle the
// result, either by returning a { value, done } result from the
// delegate iterator, or by modifying context.method and context.arg,
// setting context.delegate to null, and returning the ContinueSentinel.
function maybeInvokeDelegate(delegate, context) {
var method = delegate.iterator[context.method];
if (method === undefined$1) {
// A .throw or .return when the delegate iterator has no .throw
// method always terminates the yield* loop.
context.delegate = null;
if (context.method === "throw") {
// Note: ["return"] must be used for ES3 parsing compatibility.
if (delegate.iterator["return"]) {
// If the delegate iterator has a return method, give it a
// chance to clean up.
context.method = "return";
context.arg = undefined$1;
maybeInvokeDelegate(delegate, context);
if (context.method === "throw") {
// If maybeInvokeDelegate(context) changed context.method from
// "return" to "throw", let that override the TypeError below.
return ContinueSentinel;
}
}
context.method = "throw";
context.arg = new TypeError(
"The iterator does not provide a 'throw' method");
}
return ContinueSentinel;
}
var record = tryCatch(method, delegate.iterator, context.arg);
if (record.type === "throw") {
context.method = "throw";
context.arg = record.arg;
context.delegate = null;
return ContinueSentinel;
}
var info = record.arg;
if (! info) {
context.method = "throw";
context.arg = new TypeError("iterator result is not an object");
context.delegate = null;
return ContinueSentinel;
}
if (info.done) {
// Assign the result of the finished delegate to the temporary
// variable specified by delegate.resultName (see delegateYield).
context[delegate.resultName] = info.value;
// Resume execution at the desired location (see delegateYield).
context.next = delegate.nextLoc;
// If context.method was "throw" but the delegate handled the
// exception, let the outer generator proceed normally. If
// context.method was "next", forget context.arg since it has been
// "consumed" by the delegate iterator. If context.method was
// "return", allow the original .return call to continue in the
// outer generator.
if (context.method !== "return") {
context.method = "next";
context.arg = undefined$1;
}
} else {
// Re-yield the result returned by the delegate method.
return info;
}
// The delegate iterator is finished, so forget it and continue with
// the outer generator.
context.delegate = null;
return ContinueSentinel;
}
// Define Generator.prototype.{next,throw,return} in terms of the
// unified ._invoke helper method.
defineIteratorMethods(Gp);
define(Gp, toStringTagSymbol, "Generator");
// A Generator should always return itself as the iterator object when the
// @@iterator function is called on it. Some browsers' implementations of the
// iterator prototype chain incorrectly implement this, causing the Generator
// object to not be returned from this call. This ensures that doesn't happen.
// See https://github.com/facebook/regenerator/issues/274 for more details.
Gp[iteratorSymbol] = function() {
return this;
};
Gp.toString = function() {
return "[object Generator]";
};
function pushTryEntry(locs) {
var entry = { tryLoc: locs[0] };
if (1 in locs) {
entry.catchLoc = locs[1];
}
if (2 in locs) {
entry.finallyLoc = locs[2];
entry.afterLoc = locs[3];
}
this.tryEntries.push(entry);
}
function resetTryEntry(entry) {
var record = entry.completion || {};
record.type = "normal";
delete record.arg;
entry.completion = record;
}
function Context(tryLocsList) {
// The root entry object (effectively a try statement without a catch
// or a finally block) gives us a place to store values thrown from
// locations where there is no enclosing try statement.
this.tryEntries = [{ tryLoc: "root" }];
tryLocsList.forEach(pushTryEntry, this);
this.reset(true);
}
exports.keys = function(object) {
var keys = [];
for (var key in object) {
keys.push(key);
}
keys.reverse();
// Rather than returning an object with a next method, we keep
// things simple and return the next function itself.
return function next() {
while (keys.length) {
var key = keys.pop();
if (key in object) {
next.value = key;
next.done = false;
return next;
}
}
// To avoid creating an additional object, we just hang the .value
// and .done properties off the next function object itself. This
// also ensures that the minifier will not anonymize the function.
next.done = true;
return next;
};
};
function values(iterable) {
if (iterable) {
var iteratorMethod = iterable[iteratorSymbol];
if (iteratorMethod) {
return iteratorMethod.call(iterable);
}
if (typeof iterable.next === "function") {
return iterable;
}
if (!isNaN(iterable.length)) {
var i = -1, next = function next() {
while (++i < iterable.length) {
if (hasOwn.call(iterable, i)) {
next.value = iterable[i];
next.done = false;
return next;
}
}
next.value = undefined$1;
next.done = true;
return next;
};
return next.next = next;
}
}
// Return an iterator with no values.
return { next: doneResult };
}
exports.values = values;
function doneResult() {
return { value: undefined$1, done: true };
}
Context.prototype = {
constructor: Context,
reset: function(skipTempReset) {
this.prev = 0;
this.next = 0;
// Resetting context._sent for legacy support of Babel's
// function.sent implementation.
this.sent = this._sent = undefined$1;
this.done = false;
this.delegate = null;
this.method = "next";
this.arg = undefined$1;
this.tryEntries.forEach(resetTryEntry);
if (!skipTempReset) {
for (var name in this) {
// Not sure about the optimal order of these conditions:
if (name.charAt(0) === "t" &&
hasOwn.call(this, name) &&
!isNaN(+name.slice(1))) {
this[name] = undefined$1;
}
}
}
},
stop: function() {
this.done = true;
var rootEntry = this.tryEntries[0];
var rootRecord = rootEntry.completion;
if (rootRecord.type === "throw") {
throw rootRecord.arg;
}
return this.rval;
},
dispatchException: function(exception) {
if (this.done) {
throw exception;
}
var context = this;
function handle(loc, caught) {
record.type = "throw";
record.arg = exception;
context.next = loc;
if (caught) {
// If the dispatched exception was caught by a catch block,
// then let that catch block handle the exception normally.
context.method = "next";
context.arg = undefined$1;
}
return !! caught;
}
for (var i = this.tryEntries.length - 1; i >= 0; --i) {
var entry = this.tryEntries[i];
var record = entry.completion;
if (entry.tryLoc === "root") {
// Exception thrown outside of any try block that could handle
// it, so set the completion value of the entire function to
// throw the exception.
return handle("end");
}
if (entry.tryLoc <= this.prev) {
var hasCatch = hasOwn.call(entry, "catchLoc");
var hasFinally = hasOwn.call(entry, "finallyLoc");
if (hasCatch && hasFinally) {
if (this.prev < entry.catchLoc) {
return handle(entry.catchLoc, true);
} else if (this.prev < entry.finallyLoc) {
return handle(entry.finallyLoc);
}
} else if (hasCatch) {
if (this.prev < entry.catchLoc) {
return handle(entry.catchLoc, true);
}
} else if (hasFinally) {
if (this.prev < entry.finallyLoc) {
return handle(entry.finallyLoc);
}
} else {
throw new Error("try statement without catch or finally");
}
}
}
},
abrupt: function(type, arg) {
for (var i = this.tryEntries.length - 1; i >= 0; --i) {
var entry = this.tryEntries[i];
if (entry.tryLoc <= this.prev &&
hasOwn.call(entry, "finallyLoc") &&
this.prev < entry.finallyLoc) {
var finallyEntry = entry;
break;
}
}
if (finallyEntry &&
(type === "break" ||
type === "continue") &&
finallyEntry.tryLoc <= arg &&
arg <= finallyEntry.finallyLoc) {
// Ignore the finally entry if control is not jumping to a
// location outside the try/catch block.
finallyEntry = null;
}
var record = finallyEntry ? finallyEntry.completion : {};
record.type = type;
record.arg = arg;
if (finallyEntry) {
this.method = "next";
this.next = finallyEntry.finallyLoc;
return ContinueSentinel;
}
return this.complete(record);
},
complete: function(record, afterLoc) {
if (record.type === "throw") {
throw record.arg;
}
if (record.type === "break" ||
record.type === "continue") {
this.next = record.arg;
} else if (record.type === "return") {
this.rval = this.arg = record.arg;
this.method = "return";
this.next = "end";
} else if (record.type === "normal" && afterLoc) {
this.next = afterLoc;
}
return ContinueSentinel;
},
finish: function(finallyLoc) {
for (var i = this.tryEntries.length - 1; i >= 0; --i) {
var entry = this.tryEntries[i];
if (entry.finallyLoc === finallyLoc) {
this.complete(entry.completion, entry.afterLoc);
resetTryEntry(entry);
return ContinueSentinel;
}
}
},
"catch": function(tryLoc) {
for (var i = this.tryEntries.length - 1; i >= 0; --i) {
var entry = this.tryEntries[i];
if (entry.tryLoc === tryLoc) {
var record = entry.completion;
if (record.type === "throw") {
var thrown = record.arg;
resetTryEntry(entry);
}
return thrown;
}
}
// The context.catch method must only be called with a location
// argument that corresponds to a known catch block.
throw new Error("illegal catch attempt");
},
delegateYield: function(iterable, resultName, nextLoc) {
this.delegate = {
iterator: values(iterable),
resultName: resultName,
nextLoc: nextLoc
};
if (this.method === "next") {
// Deliberately forget the last sent value so that we don't
// accidentally pass it on to the delegate.
this.arg = undefined$1;
}
return ContinueSentinel;
}
};
// Regardless of whether this script is executing as a CommonJS module
// or not, return the runtime object so that we can declare the variable
// regeneratorRuntime in the outer scope, which allows this module to be
// injected easily by `bin/regenerator --include-runtime script.js`.
return exports;
}(
// If this script is executing as a CommonJS module, use module.exports
// as the regeneratorRuntime namespace. Otherwise create a new empty
// object. Either way, the resulting object will be used to initialize
// the regeneratorRuntime variable at the top of this file.
module.exports
));
try {
regeneratorRuntime = runtime;
} catch (accidentalStrictMode) {
// This module should not be running in strict mode, so the above
// assignment should always work unless something is misconfigured. Just
// in case runtime.js accidentally runs in strict mode, we can escape
// strict mode using a global Function call. This could conceivably fail
// if a Content Security Policy forbids using Function, but in that case
// the proper solution is to fix the accidental strict mode problem. If
// you've misconfigured your bundler to force strict mode and applied a
// CSP to forbid Function, and you're not willing to fix either of those
// problems, please detail your unique predicament in a GitHub issue.
Function("r", "regeneratorRuntime = r")(runtime);
}
});
var _marked = /*#__PURE__*/runtime_1.mark(scanAtlasTexels);
var ATLAS_BG_COLOR = /*#__PURE__*/new THREE.Color('#000000');
var VERTEX_SHADER = "\n attribute vec4 faceInfo;\n attribute vec2 uv2;\n\n varying vec4 vFaceInfo;\n uniform vec2 uvOffset;\n\n void main() {\n vFaceInfo = faceInfo;\n\n gl_Position = projectionMatrix * vec4(\n uv2 + uvOffset, // UV2 is the actual position on map\n 0,\n 1.0\n );\n }\n";
var FRAGMENT_SHADER = "\n varying vec4 vFaceInfo;\n\n void main() {\n // encode the face information in map\n gl_FragColor = vFaceInfo;\n }\n";
function getTexelInfo(atlasMap, texelIndex) {
// get current atlas face we are filling up
var texelInfoBase = texelIndex * 4;
var texelPosU = atlasMap.data[texelInfoBase];
var texelPosV = atlasMap.data[texelInfoBase + 1];
var texelItemEnc = atlasMap.data[texelInfoBase + 2];
var texelFaceEnc = atlasMap.data[texelInfoBase + 3]; // skip computation if this texel is empty
if (texelItemEnc === 0) {
return null;
} // otherwise, proceed with computation and exit
var texelItemIndex = Math.round(texelItemEnc - 1);
var texelFaceIndex = Math.round(texelFaceEnc - 1);
if (texelItemIndex < 0 || texelItemIndex >= atlasMap.items.length) {
throw new Error("incorrect atlas map item data: " + texelPosU + ", " + texelPosV + ", " + texelItemEnc + ", " + texelFaceEnc);
}
var atlasItem = atlasMap.items[texelItemIndex];
if (texelFaceIndex < 0 || texelFaceIndex >= atlasItem.faceCount) {
throw new Error("incorrect atlas map face data: " + texelPosU + ", " + texelPosV + ", " + texelItemEnc + ", " + texelFaceEnc);
} // report the viable texel to be baked
// @todo reduce malloc?
return {
texelIndex: texelIndex,
originalMesh: atlasItem.originalMesh,
originalBuffer: atlasItem.originalBuffer,
faceIndex: texelFaceIndex,
pU: texelPosU,
pV: texelPosV
};
} // iterate through all texels
function scanAtlasTexels(atlasMap, onFinished) {
var atlasWidth, atlasHeight, totalTexelCount, texelCount, retryCount, currentCounter, texelInfo;
return runtime_1.wrap(function scanAtlasTexels$(_context) {
while (1) {
switch (_context.prev = _context.next) {
case 0:
atlasWidth = atlasMap.width, atlasHeight = atlasMap.height;
totalTexelCount = atlasWidth * atlasHeight;
texelCount = 0;
retryCount = 0;
case 4:
if (!(texelCount < totalTexelCount)) {
_context.next = 16;
break;
}
// get current texel info and increment
currentCounter = texelCount;
texelCount += 1;
texelInfo = getTexelInfo(atlasMap, currentCounter); // try to keep looking for a reasonable number of cycles
// before yielding empty result
if (!(!texelInfo && retryCount < 100)) {
_context.next = 11;
break;
}
retryCount += 1;
return _context.abrupt("continue", 4);
case 11:
// yield out with either a found texel or nothing
retryCount = 0;
_context.next = 14;
return texelInfo;
case 14:
_context.next = 4;
break;
case 16:
onFinished();
case 17:
case "end":
return _context.stop();
}
}
}, _marked);
} // write out original face geometry info into the atlas map
// each texel corresponds to: (quadX, quadY, quadIndex)
// where quadX and quadY are 0..1 representing a spot in the original quad
// and quadIndex is 1-based to distinguish from blank space
// which allows to find original 3D position/normal/etc for that texel
// (quad index is int stored as float, but precision should be good enough)
// NOTE: each atlas texture sample corresponds to the position of
// the physical midpoint of the corresponding rendered texel
// (e.g. if lightmap was shown pixelated); this works well
// with either bilinear or nearest filtering
// @todo consider stencil buffer, or just 8bit texture
function getInputItems(sceneItems) {
var items = [];
for (var _iterator = _createForOfIteratorHelperLoose(sceneItems), _step; !(_step = _iterator()).done;) {
var mesh = _step.value;
if (!(mesh instanceof THREE.Mesh)) {
continue;
} // ignore anything that is not a buffer geometry
// @todo warn on legacy geometry objects if they seem to have UV2?
var buffer = mesh.geometry;
if (!(buffer instanceof THREE.BufferGeometry)) {
continue;
} // if we see this object, it is not read-only and hence must have UV2
var uv2Attr = buffer.attributes.uv2;
if (!uv2Attr) {
throw new Error('expecting UV2 coordinates on writable lightmapped mesh');
} // gather other necessary attributes and ensure compatible data
// @todo support non-indexed meshes
// @todo support interleaved attributes
var indexAttr = buffer.index;
if (!indexAttr) {
throw new Error('expected face index array');
}
var faceVertexCount = indexAttr.array.length;
if (!(uv2Attr instanceof THREE.BufferAttribute)) {
throw new Error('expected uv2 attribute');
} // index of this item once it will be added to list
var itemIndex = items.length;
var atlasPosAttr = new THREE.Float32BufferAttribute(faceVertexCount * 3, 3);
var atlasUV2Attr = new THREE.Float32BufferAttribute(faceVertexCount * 2, 2);
var atlasFaceInfoAttr = new THREE.Float32BufferAttribute(faceVertexCount * 4, 4); // unroll indexed mesh data into non-indexed buffer so that we can encode per-face data
// (otherwise vertices may be shared, and hence cannot have face-specific info in vertex attribute)
var indexData = indexAttr.array;
for (var faceVertexIndex = 0; faceVertexIndex < faceVertexCount; faceVertexIndex += 1) {
var faceMod = faceVertexIndex % 3; // not bothering to copy vertex position data because we don't need it
// (however, we cannot omit the 'position' attribute altogether)
atlasUV2Attr.copyAt(faceVertexIndex, uv2Attr, indexData[faceVertexIndex]); // position of vertex in face: (0,0), (0,1) or (1,0)
var facePosX = faceMod & 1;
var facePosY = (faceMod & 2) >> 1; // mesh index + face index combined into one
var faceIndex = (faceVertexIndex - faceMod) / 3;
atlasFaceInfoAttr.setXYZW(faceVertexIndex, facePosX, facePosY, itemIndex + 1, // encode item index (1-based to indicate filled texels)
faceIndex + 1 // encode face index (1-based to indicate filled texels)
);
} // this buffer is disposed of when atlas scene is unmounted
var atlasBuffer = new THREE.BufferGeometry();
atlasBuffer.setAttribute('position', atlasPosAttr);
atlasBuffer.setAttribute('uv2', atlasUV2Attr);
atlasBuffer.setAttribute('faceInfo', atlasFaceInfoAttr);
items.push({
faceCount: faceVertexCount / 3,
perFaceBuffer: atlasBuffer,
originalMesh: mesh,
originalBuffer: buffer
});
}
return items;
}
function createOrthoScene(inputItems) {
var orthoScene = new THREE.Scene();
orthoScene.name = 'Atlas mapper ortho scene';
for (var _iterator2 = _createForOfIteratorHelperLoose(inputItems), _step2; !(_step2 = _iterator2()).done;) {
var geom = _step2.value;
var mesh = new THREE.Mesh();
mesh.frustumCulled = false; // skip bounding box checks (not applicable and logic gets confused)
mesh.geometry = geom.perFaceBuffer;
mesh.material = new THREE.ShaderMaterial({
side: THREE.DoubleSide,
vertexShader: VERTEX_SHADER,
fragmentShader: FRAGMENT_SHADER
});
orthoScene.add(mesh);
}
return orthoScene;
}
function renderAtlas(gl, width, height, sceneItems) {
var inputItems = getInputItems(sceneItems);
var orthoScene = createOrthoScene(inputItems); // set up simple rasterization for pure data consumption
var orthoTarget = new THREE.WebGLRenderTarget(width, height, {
type: THREE.FloatType,
magFilter: THREE.NearestFilter,
minFilter: THREE.NearestFilter,
depthBuffer: false,
generateMipmaps: false
});
var orthoCamera = new THREE.OrthographicCamera(0, 1, 1, 0, 0, 1);
var orthoData = new Float32Array(width * height * 4); // save existing renderer state
var prevClearColor = new THREE.Color();
gl.getClearColor(prevClearColor);
var prevClearAlpha = gl.getClearAlpha();
var prevAutoClear = gl.autoClear; // produce the output
gl.setRenderTarget(orthoTarget);
gl.setClearColor(ATLAS_BG_COLOR, 0); // alpha must be zero
gl.autoClear = true;
gl.render(orthoScene, orthoCamera); // restore previous renderer state
gl.setRenderTarget(null);
gl.setClearColor(prevClearColor, prevClearAlpha);
gl.autoClear = prevAutoClear;
gl.readRenderTargetPixels(orthoTarget, 0, 0, width, height, orthoData); // clean up
orthoTarget.dispose();
return {
width: width,
height: height,
texture: new THREE.DataTexture(orthoData, width, height, THREE.RGBAFormat, THREE.FloatType),
data: orthoData,
// no need to expose references to atlas-specific geometry clones
items: inputItems.map(function (_ref) {
var faceCount = _ref.faceCount,
originalMesh = _ref.originalMesh,
originalBuffer = _ref.originalBuffer;
return {
faceCount: faceCount,
originalMesh: originalMesh,
originalBuffer: originalBuffer
};
})
};
}
var tmpOrigin = /*#__PURE__*/new THREE.Vector3();
var tmpU = /*#__PURE__*/new THREE.Vector3();
var tmpV = /*#__PURE__*/new THREE.Vector3();
var tmpNormal = /*#__PURE__*/new THREE.Vector3();
var tmpLookAt = /*#__PURE__*/new THREE.Vector3();
var tmpProbeBox = /*#__PURE__*/new THREE.Vector4();
var tmpPrevClearColor = /*#__PURE__*/new THREE.Color(); // used inside blending function
var tmpNormalOther = /*#__PURE__*/new THREE.Vector3();
var PROBE_BG_ZERO = /*#__PURE__*/new THREE.Color('#000000');
var PROBE_BG_FULL = /*#__PURE__*/new THREE.Color('#ffffff');
var PROBE_BATCH_COUNT = 8;
var DEFAULT_LIGHT_PROBE_SETTINGS = {
targetSize: 16,
offset: 0,
near: 0.05,
far: 50
}; // bilinear interpolation of normals in triangle, with normalization
function setBlendedNormal(out, origNormalArray, origIndexArray, faceVertexBase, pU, pV) {
// barycentric coordinate for origin point
var pO = 1 - pU - pV;
out.fromArray(origNormalArray, origIndexArray[faceVertexBase] * 3);
out.multiplyScalar(pO);
tmpNormalOther.fromArray(origNormalArray, origIndexArray[faceVertexBase + 1] * 3);
out.addScaledVector(tmpNormalOther, pU);
tmpNormalOther.fromArray(origNormalArray, origIndexArray[faceVertexBase + 2] * 3);
out.addScaledVector(tmpNormalOther, pV);
out.normalize();
}
function setUpProbeUp(probeCam, mesh, origin, normal, uDir) {
probeCam.position.copy(origin);
probeCam.up.copy(uDir); // add normal to accumulator and look at it
tmpLookAt.copy(normal);
tmpLookAt.add(origin);
probeCam.lookAt(tmpLookAt);
probeCam.scale.set(1, 1, 1); // then, transform camera into world space
probeCam.applyMatrix4(mesh.matrixWorld);
}
function setUpProbeSide(probeCam, mesh, origin, normal, direction, directionSign) {
probeCam.position.copy(origin); // up is the normal
probeCam.up.copy(normal); // add normal to accumulator and look at it
tmpLookAt.copy(origin);
tmpLookAt.addScaledVector(direction, directionSign);
probeCam.lookAt(tmpLookAt);
probeCam.scale.set(1, 1, 1); // then, transform camera into world space
probeCam.applyMatrix4(mesh.matrixWorld);
} // for each pixel in the individual probe viewport, compute contribution to final tally
// (edges are weaker because each pixel covers less of a view angle)
// @todo perform weighted pixel averaging/etc all in this file
function generatePixelAreaLookup(probeTargetSize) {
var probePixelCount = probeTargetSize * probeTargetSize;
var lookup = new Array(probePixelCount);
var probePixelBias = 0.5 / probeTargetSize;
for (var py = 0; py < probeTargetSize; py += 1) {
// compute offset from center (with a bias for target pixel size)
var dy = py / probeTargetSize - 0.5 + probePixelBias;
for (var px = 0; px < probeTargetSize; px += 1) {
// compute offset from center (with a bias for target pixel size)
var dx = px / probeTargetSize - 0.5 + probePixelBias; // compute multiplier as affected by inclination of corresponding ray
var span = Math.hypot(dx * 2, dy * 2);
var hypo = Math.hypot(span, 1);
var area = 1 / hypo;
lookup[py * probeTargetSize + px] = area;
}
}
return lookup;
} // collect and combine pixel aggregate from rendered probe viewports
// (this ignores the alpha channel from viewports)
var tmpTexelRGBA = /*#__PURE__*/new THREE.Vector4();
function readTexel(readLightProbe, probePixelAreaLookup) {
var r = 0,
g = 0,
b = 0,
totalDivider = 0;
for (var _iterator = _createForOfIteratorHelperLoose(readLightProbe()), _step; !(_step = _iterator()).done;) {
var _step$value = _step.value,
probeData = _step$value.rgbaData,
rowPixelStride = _step$value.rowPixelStride,
box = _step$value.probeBox,
originX = _step$value.originX,
originY = _step$value.originY;
var probeTargetSize = box.z; // assuming width is always full
var rowStride = rowPixelStride * 4;
var rowStart = box.y * rowStride + box.x * 4;
var totalMax = (box.y + box.w) * rowStride;
var py = originY;
while (rowStart < totalMax) {
var rowMax = rowStart + box.z * 4;
var px = originX;
for (var i = rowStart; i < rowMax; i += 4) {
// compute multiplier as affected by inclination of corresponding ray
var area = probePixelAreaLookup[py * probeTargetSize + px];
r += area * probeData[i];
g += area * probeData[i + 1];
b += area * probeData[i + 2];
totalDivider += area;
px += 1;
}
rowStart += rowStride;
py += 1;
}
} // alpha is set later
tmpTexelRGBA.x = r / totalDivider;
tmpTexelRGBA.y = g / totalDivider;
tmpTexelRGBA.z = b / totalDivider;
} // @todo use light sphere for AO (double-check that far-extent is radius + epsilon)
function withLightProbe(_x, _x2, _x3, _x4) {
return _withLightProbe.apply(this, arguments);
}
function _withLightProbe() {
_withLightProbe = _asyncToGenerator( /*#__PURE__*/runtime_1.mark(function _callee(aoMode, aoDistance, settings, taskCallback) {
var probeTargetSize, probeBgColor, halfSize, targetWidth, targetHeight, probePixelAreaLookup, probeTarget, rtFov, rtAspect, rtNear, rtFar, probeCam, probeData, batchTexels, renderLightProbeBatch;
return runtime_1.wrap(function _callee$(_context4) {
while (1) {
switch (_context4.prev = _context4.next) {
case 0:
probeTargetSize = settings.targetSize;
probeBgColor = aoMode ? PROBE_BG_FULL : PROBE_BG_ZERO;
halfSize = probeTargetSize / 2;
targetWidth = probeTargetSize * 4; // 4 tiles across
targetHeight = probeTargetSize * 2 * PROBE_BATCH_COUNT; // 2 tiles x batch count
// @todo make this async?
probePixelAreaLookup = generatePixelAreaLookup(probeTargetSize); // set up simple rasterization for pure data consumption
probeTarget = new THREE.WebGLRenderTarget(targetWidth, targetHeight, {
type: THREE.FloatType,
magFilter: THREE.NearestFilter,
minFilter: THREE.NearestFilter,
generateMipmaps: false
});
rtFov = 90; // view cone must be quarter of the hemisphere
rtAspect = 1; // square render target
rtNear = settings.near;
rtFar = aoMode ? aoDistance : settings.far; // in AO mode, lock far-extent to requested distance
probeCam = new THREE.PerspectiveCamera(rtFov, rtAspect, rtNear, rtFar);
probeData = new Float32Array(targetWidth * targetHeight * 4);
batchTexels = new Array(PROBE_BATCH_COUNT); // @todo ensure there is biasing to be in middle of texel physical square
renderLightProbeBatch = /*#__PURE__*/runtime_1.mark(function renderLightProbeBatch(gl, lightScene, texelIterator) {
var prevClearAlpha, prevAutoClear, prevToneMapping, batchItem, texelResult, _texelResult$value, texelIndex, originalMesh, originalBuffer, faceIndex, pU, pV, batchOffsetY, origIndexArray, origPosArray, origNormalArray, faceVertexBase, _loop, _batchItem, _ret;
return runtime_1.wrap(function renderLightProbeBatch$(_context3) {
while (1) {
switch (_context3.prev = _context3.next) {
case 0:
// save existing renderer state
gl.getClearColor(tmpPrevClearColor);
prevClearAlpha = gl.getClearAlpha();
prevAutoClear = gl.autoClear;
prevToneMapping = gl.toneMapping; // reset tone mapping output to linear because we are aggregating unprocessed luminance output
gl.toneMapping = THREE.LinearToneMapping; // set up render target for overall clearing
// (bypassing setViewport means that the renderer conveniently preserves previous state)
probeTarget.scissorTest = true;
probeTarget.scissor.set(0, 0, targetWidth, targetHeight);
probeTarget.viewport.set(0, 0, targetWidth, targetHeight);
gl.setRenderTarget(probeTarget);
gl.autoClear = false; // clear entire area
gl.setClearColor(probeBgColor, 1);
gl.clear(true, true, false);
batchItem = 0;
case 13:
if (!(batchItem < PROBE_BATCH_COUNT)) {
_context3.next = 71;
break;
}
texelResult = texelIterator.next();
if (!(!texelResult.done && texelResult.value)) {
_context3.next = 66;
break;
}
_texelResult$value = texelResult.value, texelIndex = _texelResult$value.texelIndex, originalMesh = _texelResult$value.originalMesh, originalBuffer = _texelResult$value.originalBuffer, faceIndex = _texelResult$value.faceIndex, pU = _texelResult$value.pU, pV = _texelResult$value.pV; // each batch is 2 tiles high
batchOffsetY = batchItem * probeTargetSize * 2; // save which texel is being rendered for later reporting
batchTexels[batchItem] = texelIndex;
if (originalBuffer.index) {
_context3.next = 21;
break;
}
throw new Error('expected indexed mesh');
case 21:
// read vertex position for this face and interpolate along U and V axes
origIndexArray = originalBuffer.index.array;
origPosArray = originalBuffer.attributes.position.array;
origNormalArray = originalBuffer.attributes.normal.array; // get face vertex positions
faceVertexBase = faceIndex * 3;
tmpOrigin.fromArray(origPosArray, origIndexArray[faceVertexBase] * 3);
tmpU.fromArray(origPosArray, origIndexArray[faceVertexBase + 1] * 3);
tmpV.fromArray(origPosArray, origIndexArray[faceVertexBase + 2] * 3); // compute face dimensions
tmpU.sub(tmpOrigin);
tmpV.sub(tmpOrigin); // set camera to match texel, first in mesh-local space
tmpOrigin.addScaledVector(tmpU, pU);
tmpOrigin.addScaledVector(tmpV, pV); // compute normal and cardinal directions
// (done per texel for linear interpolation of normals)
setBlendedNormal(tmpNormal, origNormalArray, origIndexArray, faceVertexBase, pU, pV); // use consistent "left" and "up" directions based on just the normal
if (tmpNormal.x === 0 && tmpNormal.y === 0) {
tmpU.set(1, 0, 0);
} else {
tmpU.set(0, 0, 1);
}
tmpV.crossVectors(tmpNormal, tmpU);
tmpV.normalize();
tmpU.crossVectors(tmpNormal, tmpV);
tmpU.normalize(); // nudge the light probe position based on requested offset
tmpOrigin.addScaledVector(tmpNormal, settings.offset); // proceed with the renders
setUpProbeUp(probeCam, originalMesh, tmpOrigin, tmpNormal, tmpU);
probeTarget.viewport.set(0, batchOffsetY + probeTargetSize, probeTargetSize, probeTargetSize);
probeTarget.scissor.set(0, batchOffsetY + probeTargetSize, probeTargetSize, probeTargetSize);
gl.setRenderTarget(probeTarget); // propagate latest target params
gl.render(lightScene, probeCam); // sides only need the upper half of rendered view, so we set scissor accordingly
setUpProbeSide(probeCam, originalMesh, tmpOrigin, tmpNormal, tmpU, 1);
probeTarget.viewport.set(0, batchOffsetY, probeTargetSize, probeTargetSize);
probeTarget.scissor.set(0, batchOffsetY + halfSize, probeTargetSize, halfSize);
gl.setRenderTarget(probeTarget); // propagate latest target params
gl.render(lightScene, probeCam);
setUpProbeSide(probeCam, originalMesh, tmpOrigin, tmpNormal, tmpU, -1);
probeTarget.viewport.set(probeTargetSize, batchOffsetY, probeTargetSize, probeTargetSiz