UNPKG

@react-three/lightmap

Version:

In-browser lightmap/AO baker for react-three-fiber and ThreeJS

1,404 lines (1,150 loc) 107 kB
'use strict'; Object.defineProperty(exports, '__esModule', { value: true }); function _interopDefault (ex) { return (ex && (typeof ex === 'object') && 'default' in ex) ? ex['default'] : ex; } var React = require('react'); var React__default = _interopDefault(React); var THREE = require('three'); var potpack = _interopDefault(require('potpack')); var fiber = require('@react-three/fiber'); function asyncGeneratorStep(gen, resolve, reject, _next, _throw, key, arg) { try { var info = gen[key](arg); var value = info.value; } catch (error) { reject(error); return; } if (info.done) { resolve(value); } else { Promise.resolve(value).then(_next, _throw); } } function _asyncToGenerator(fn) { return function () { var self = this, args = arguments; return new Promise(function (resolve, reject) { var gen = fn.apply(self, args); function _next(value) { asyncGeneratorStep(gen, resolve, reject, _next, _throw, "next", value); } function _throw(err) { asyncGeneratorStep(gen, resolve, reject, _next, _throw, "throw", err); } _next(undefined); }); }; } function _extends() { _extends = Object.assign || function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); } function _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; } function _unsupportedIterableToArray(o, minLen) { if (!o) return; if (typeof o === "string") return _arrayLikeToArray(o, minLen); var n = Object.prototype.toString.call(o).slice(8, -1); if (n === "Object" && o.constructor) n = o.constructor.name; if (n === "Map" || n === "Set") return Array.from(o); if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray(o, minLen); } function _arrayLikeToArray(arr, len) { if (len == null || len > arr.length) len = arr.length; for (var i = 0, arr2 = new Array(len); i < len; i++) arr2[i] = arr[i]; return arr2; } function _createForOfIteratorHelperLoose(o, allowArrayLike) { var it; if (typeof Symbol === "undefined" || o[Symbol.iterator] == null) { if (Array.isArray(o) || (it = _unsupportedIterableToArray(o)) || allowArrayLike && o && typeof o.length === "number") { if (it) o = it; var i = 0; return function () { if (i >= o.length) return { done: true }; return { done: false, value: o[i++] }; }; } throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } it = o[Symbol.iterator](); return it.next.bind(it); } function createCommonjsModule(fn, module) { return module = { exports: {} }, fn(module, module.exports), module.exports; } var runtime_1 = createCommonjsModule(function (module) { /** * Copyright (c) 2014-present, Facebook, Inc. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ var runtime = (function (exports) { var Op = Object.prototype; var hasOwn = Op.hasOwnProperty; var undefined$1; // More compressible than void 0. var $Symbol = typeof Symbol === "function" ? Symbol : {}; var iteratorSymbol = $Symbol.iterator || "@@iterator"; var asyncIteratorSymbol = $Symbol.asyncIterator || "@@asyncIterator"; var toStringTagSymbol = $Symbol.toStringTag || "@@toStringTag"; function define(obj, key, value) { Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true }); return obj[key]; } try { // IE 8 has a broken Object.defineProperty that only works on DOM objects. define({}, ""); } catch (err) { define = function(obj, key, value) { return obj[key] = value; }; } function wrap(innerFn, outerFn, self, tryLocsList) { // If outerFn provided and outerFn.prototype is a Generator, then outerFn.prototype instanceof Generator. var protoGenerator = outerFn && outerFn.prototype instanceof Generator ? outerFn : Generator; var generator = Object.create(protoGenerator.prototype); var context = new Context(tryLocsList || []); // The ._invoke method unifies the implementations of the .next, // .throw, and .return methods. generator._invoke = makeInvokeMethod(innerFn, self, context); return generator; } exports.wrap = wrap; // Try/catch helper to minimize deoptimizations. Returns a completion // record like context.tryEntries[i].completion. This interface could // have been (and was previously) designed to take a closure to be // invoked without arguments, but in all the cases we care about we // already have an existing method we want to call, so there's no need // to create a new function object. We can even get away with assuming // the method takes exactly one argument, since that happens to be true // in every case, so we don't have to touch the arguments object. The // only additional allocation required is the completion record, which // has a stable shape and so hopefully should be cheap to allocate. function tryCatch(fn, obj, arg) { try { return { type: "normal", arg: fn.call(obj, arg) }; } catch (err) { return { type: "throw", arg: err }; } } var GenStateSuspendedStart = "suspendedStart"; var GenStateSuspendedYield = "suspendedYield"; var GenStateExecuting = "executing"; var GenStateCompleted = "completed"; // Returning this object from the innerFn has the same effect as // breaking out of the dispatch switch statement. var ContinueSentinel = {}; // Dummy constructor functions that we use as the .constructor and // .constructor.prototype properties for functions that return Generator // objects. For full spec compliance, you may wish to configure your // minifier not to mangle the names of these two functions. function Generator() {} function GeneratorFunction() {} function GeneratorFunctionPrototype() {} // This is a polyfill for %IteratorPrototype% for environments that // don't natively support it. var IteratorPrototype = {}; IteratorPrototype[iteratorSymbol] = function () { return this; }; var getProto = Object.getPrototypeOf; var NativeIteratorPrototype = getProto && getProto(getProto(values([]))); if (NativeIteratorPrototype && NativeIteratorPrototype !== Op && hasOwn.call(NativeIteratorPrototype, iteratorSymbol)) { // This environment has a native %IteratorPrototype%; use it instead // of the polyfill. IteratorPrototype = NativeIteratorPrototype; } var Gp = GeneratorFunctionPrototype.prototype = Generator.prototype = Object.create(IteratorPrototype); GeneratorFunction.prototype = Gp.constructor = GeneratorFunctionPrototype; GeneratorFunctionPrototype.constructor = GeneratorFunction; GeneratorFunction.displayName = define( GeneratorFunctionPrototype, toStringTagSymbol, "GeneratorFunction" ); // Helper for defining the .next, .throw, and .return methods of the // Iterator interface in terms of a single ._invoke method. function defineIteratorMethods(prototype) { ["next", "throw", "return"].forEach(function(method) { define(prototype, method, function(arg) { return this._invoke(method, arg); }); }); } exports.isGeneratorFunction = function(genFun) { var ctor = typeof genFun === "function" && genFun.constructor; return ctor ? ctor === GeneratorFunction || // For the native GeneratorFunction constructor, the best we can // do is to check its .name property. (ctor.displayName || ctor.name) === "GeneratorFunction" : false; }; exports.mark = function(genFun) { if (Object.setPrototypeOf) { Object.setPrototypeOf(genFun, GeneratorFunctionPrototype); } else { genFun.__proto__ = GeneratorFunctionPrototype; define(genFun, toStringTagSymbol, "GeneratorFunction"); } genFun.prototype = Object.create(Gp); return genFun; }; // Within the body of any async function, `await x` is transformed to // `yield regeneratorRuntime.awrap(x)`, so that the runtime can test // `hasOwn.call(value, "__await")` to determine if the yielded value is // meant to be awaited. exports.awrap = function(arg) { return { __await: arg }; }; function AsyncIterator(generator, PromiseImpl) { function invoke(method, arg, resolve, reject) { var record = tryCatch(generator[method], generator, arg); if (record.type === "throw") { reject(record.arg); } else { var result = record.arg; var value = result.value; if (value && typeof value === "object" && hasOwn.call(value, "__await")) { return PromiseImpl.resolve(value.__await).then(function(value) { invoke("next", value, resolve, reject); }, function(err) { invoke("throw", err, resolve, reject); }); } return PromiseImpl.resolve(value).then(function(unwrapped) { // When a yielded Promise is resolved, its final value becomes // the .value of the Promise<{value,done}> result for the // current iteration. result.value = unwrapped; resolve(result); }, function(error) { // If a rejected Promise was yielded, throw the rejection back // into the async generator function so it can be handled there. return invoke("throw", error, resolve, reject); }); } } var previousPromise; function enqueue(method, arg) { function callInvokeWithMethodAndArg() { return new PromiseImpl(function(resolve, reject) { invoke(method, arg, resolve, reject); }); } return previousPromise = // If enqueue has been called before, then we want to wait until // all previous Promises have been resolved before calling invoke, // so that results are always delivered in the correct order. If // enqueue has not been called before, then it is important to // call invoke immediately, without waiting on a callback to fire, // so that the async generator function has the opportunity to do // any necessary setup in a predictable way. This predictability // is why the Promise constructor synchronously invokes its // executor callback, and why async functions synchronously // execute code before the first await. Since we implement simple // async functions in terms of async generators, it is especially // important to get this right, even though it requires care. previousPromise ? previousPromise.then( callInvokeWithMethodAndArg, // Avoid propagating failures to Promises returned by later // invocations of the iterator. callInvokeWithMethodAndArg ) : callInvokeWithMethodAndArg(); } // Define the unified helper method that is used to implement .next, // .throw, and .return (see defineIteratorMethods). this._invoke = enqueue; } defineIteratorMethods(AsyncIterator.prototype); AsyncIterator.prototype[asyncIteratorSymbol] = function () { return this; }; exports.AsyncIterator = AsyncIterator; // Note that simple async functions are implemented on top of // AsyncIterator objects; they just return a Promise for the value of // the final result produced by the iterator. exports.async = function(innerFn, outerFn, self, tryLocsList, PromiseImpl) { if (PromiseImpl === void 0) PromiseImpl = Promise; var iter = new AsyncIterator( wrap(innerFn, outerFn, self, tryLocsList), PromiseImpl ); return exports.isGeneratorFunction(outerFn) ? iter // If outerFn is a generator, return the full iterator. : iter.next().then(function(result) { return result.done ? result.value : iter.next(); }); }; function makeInvokeMethod(innerFn, self, context) { var state = GenStateSuspendedStart; return function invoke(method, arg) { if (state === GenStateExecuting) { throw new Error("Generator is already running"); } if (state === GenStateCompleted) { if (method === "throw") { throw arg; } // Be forgiving, per 25.3.3.3.3 of the spec: // https://people.mozilla.org/~jorendorff/es6-draft.html#sec-generatorresume return doneResult(); } context.method = method; context.arg = arg; while (true) { var delegate = context.delegate; if (delegate) { var delegateResult = maybeInvokeDelegate(delegate, context); if (delegateResult) { if (delegateResult === ContinueSentinel) continue; return delegateResult; } } if (context.method === "next") { // Setting context._sent for legacy support of Babel's // function.sent implementation. context.sent = context._sent = context.arg; } else if (context.method === "throw") { if (state === GenStateSuspendedStart) { state = GenStateCompleted; throw context.arg; } context.dispatchException(context.arg); } else if (context.method === "return") { context.abrupt("return", context.arg); } state = GenStateExecuting; var record = tryCatch(innerFn, self, context); if (record.type === "normal") { // If an exception is thrown from innerFn, we leave state === // GenStateExecuting and loop back for another invocation. state = context.done ? GenStateCompleted : GenStateSuspendedYield; if (record.arg === ContinueSentinel) { continue; } return { value: record.arg, done: context.done }; } else if (record.type === "throw") { state = GenStateCompleted; // Dispatch the exception by looping back around to the // context.dispatchException(context.arg) call above. context.method = "throw"; context.arg = record.arg; } } }; } // Call delegate.iterator[context.method](context.arg) and handle the // result, either by returning a { value, done } result from the // delegate iterator, or by modifying context.method and context.arg, // setting context.delegate to null, and returning the ContinueSentinel. function maybeInvokeDelegate(delegate, context) { var method = delegate.iterator[context.method]; if (method === undefined$1) { // A .throw or .return when the delegate iterator has no .throw // method always terminates the yield* loop. context.delegate = null; if (context.method === "throw") { // Note: ["return"] must be used for ES3 parsing compatibility. if (delegate.iterator["return"]) { // If the delegate iterator has a return method, give it a // chance to clean up. context.method = "return"; context.arg = undefined$1; maybeInvokeDelegate(delegate, context); if (context.method === "throw") { // If maybeInvokeDelegate(context) changed context.method from // "return" to "throw", let that override the TypeError below. return ContinueSentinel; } } context.method = "throw"; context.arg = new TypeError( "The iterator does not provide a 'throw' method"); } return ContinueSentinel; } var record = tryCatch(method, delegate.iterator, context.arg); if (record.type === "throw") { context.method = "throw"; context.arg = record.arg; context.delegate = null; return ContinueSentinel; } var info = record.arg; if (! info) { context.method = "throw"; context.arg = new TypeError("iterator result is not an object"); context.delegate = null; return ContinueSentinel; } if (info.done) { // Assign the result of the finished delegate to the temporary // variable specified by delegate.resultName (see delegateYield). context[delegate.resultName] = info.value; // Resume execution at the desired location (see delegateYield). context.next = delegate.nextLoc; // If context.method was "throw" but the delegate handled the // exception, let the outer generator proceed normally. If // context.method was "next", forget context.arg since it has been // "consumed" by the delegate iterator. If context.method was // "return", allow the original .return call to continue in the // outer generator. if (context.method !== "return") { context.method = "next"; context.arg = undefined$1; } } else { // Re-yield the result returned by the delegate method. return info; } // The delegate iterator is finished, so forget it and continue with // the outer generator. context.delegate = null; return ContinueSentinel; } // Define Generator.prototype.{next,throw,return} in terms of the // unified ._invoke helper method. defineIteratorMethods(Gp); define(Gp, toStringTagSymbol, "Generator"); // A Generator should always return itself as the iterator object when the // @@iterator function is called on it. Some browsers' implementations of the // iterator prototype chain incorrectly implement this, causing the Generator // object to not be returned from this call. This ensures that doesn't happen. // See https://github.com/facebook/regenerator/issues/274 for more details. Gp[iteratorSymbol] = function() { return this; }; Gp.toString = function() { return "[object Generator]"; }; function pushTryEntry(locs) { var entry = { tryLoc: locs[0] }; if (1 in locs) { entry.catchLoc = locs[1]; } if (2 in locs) { entry.finallyLoc = locs[2]; entry.afterLoc = locs[3]; } this.tryEntries.push(entry); } function resetTryEntry(entry) { var record = entry.completion || {}; record.type = "normal"; delete record.arg; entry.completion = record; } function Context(tryLocsList) { // The root entry object (effectively a try statement without a catch // or a finally block) gives us a place to store values thrown from // locations where there is no enclosing try statement. this.tryEntries = [{ tryLoc: "root" }]; tryLocsList.forEach(pushTryEntry, this); this.reset(true); } exports.keys = function(object) { var keys = []; for (var key in object) { keys.push(key); } keys.reverse(); // Rather than returning an object with a next method, we keep // things simple and return the next function itself. return function next() { while (keys.length) { var key = keys.pop(); if (key in object) { next.value = key; next.done = false; return next; } } // To avoid creating an additional object, we just hang the .value // and .done properties off the next function object itself. This // also ensures that the minifier will not anonymize the function. next.done = true; return next; }; }; function values(iterable) { if (iterable) { var iteratorMethod = iterable[iteratorSymbol]; if (iteratorMethod) { return iteratorMethod.call(iterable); } if (typeof iterable.next === "function") { return iterable; } if (!isNaN(iterable.length)) { var i = -1, next = function next() { while (++i < iterable.length) { if (hasOwn.call(iterable, i)) { next.value = iterable[i]; next.done = false; return next; } } next.value = undefined$1; next.done = true; return next; }; return next.next = next; } } // Return an iterator with no values. return { next: doneResult }; } exports.values = values; function doneResult() { return { value: undefined$1, done: true }; } Context.prototype = { constructor: Context, reset: function(skipTempReset) { this.prev = 0; this.next = 0; // Resetting context._sent for legacy support of Babel's // function.sent implementation. this.sent = this._sent = undefined$1; this.done = false; this.delegate = null; this.method = "next"; this.arg = undefined$1; this.tryEntries.forEach(resetTryEntry); if (!skipTempReset) { for (var name in this) { // Not sure about the optimal order of these conditions: if (name.charAt(0) === "t" && hasOwn.call(this, name) && !isNaN(+name.slice(1))) { this[name] = undefined$1; } } } }, stop: function() { this.done = true; var rootEntry = this.tryEntries[0]; var rootRecord = rootEntry.completion; if (rootRecord.type === "throw") { throw rootRecord.arg; } return this.rval; }, dispatchException: function(exception) { if (this.done) { throw exception; } var context = this; function handle(loc, caught) { record.type = "throw"; record.arg = exception; context.next = loc; if (caught) { // If the dispatched exception was caught by a catch block, // then let that catch block handle the exception normally. context.method = "next"; context.arg = undefined$1; } return !! caught; } for (var i = this.tryEntries.length - 1; i >= 0; --i) { var entry = this.tryEntries[i]; var record = entry.completion; if (entry.tryLoc === "root") { // Exception thrown outside of any try block that could handle // it, so set the completion value of the entire function to // throw the exception. return handle("end"); } if (entry.tryLoc <= this.prev) { var hasCatch = hasOwn.call(entry, "catchLoc"); var hasFinally = hasOwn.call(entry, "finallyLoc"); if (hasCatch && hasFinally) { if (this.prev < entry.catchLoc) { return handle(entry.catchLoc, true); } else if (this.prev < entry.finallyLoc) { return handle(entry.finallyLoc); } } else if (hasCatch) { if (this.prev < entry.catchLoc) { return handle(entry.catchLoc, true); } } else if (hasFinally) { if (this.prev < entry.finallyLoc) { return handle(entry.finallyLoc); } } else { throw new Error("try statement without catch or finally"); } } } }, abrupt: function(type, arg) { for (var i = this.tryEntries.length - 1; i >= 0; --i) { var entry = this.tryEntries[i]; if (entry.tryLoc <= this.prev && hasOwn.call(entry, "finallyLoc") && this.prev < entry.finallyLoc) { var finallyEntry = entry; break; } } if (finallyEntry && (type === "break" || type === "continue") && finallyEntry.tryLoc <= arg && arg <= finallyEntry.finallyLoc) { // Ignore the finally entry if control is not jumping to a // location outside the try/catch block. finallyEntry = null; } var record = finallyEntry ? finallyEntry.completion : {}; record.type = type; record.arg = arg; if (finallyEntry) { this.method = "next"; this.next = finallyEntry.finallyLoc; return ContinueSentinel; } return this.complete(record); }, complete: function(record, afterLoc) { if (record.type === "throw") { throw record.arg; } if (record.type === "break" || record.type === "continue") { this.next = record.arg; } else if (record.type === "return") { this.rval = this.arg = record.arg; this.method = "return"; this.next = "end"; } else if (record.type === "normal" && afterLoc) { this.next = afterLoc; } return ContinueSentinel; }, finish: function(finallyLoc) { for (var i = this.tryEntries.length - 1; i >= 0; --i) { var entry = this.tryEntries[i]; if (entry.finallyLoc === finallyLoc) { this.complete(entry.completion, entry.afterLoc); resetTryEntry(entry); return ContinueSentinel; } } }, "catch": function(tryLoc) { for (var i = this.tryEntries.length - 1; i >= 0; --i) { var entry = this.tryEntries[i]; if (entry.tryLoc === tryLoc) { var record = entry.completion; if (record.type === "throw") { var thrown = record.arg; resetTryEntry(entry); } return thrown; } } // The context.catch method must only be called with a location // argument that corresponds to a known catch block. throw new Error("illegal catch attempt"); }, delegateYield: function(iterable, resultName, nextLoc) { this.delegate = { iterator: values(iterable), resultName: resultName, nextLoc: nextLoc }; if (this.method === "next") { // Deliberately forget the last sent value so that we don't // accidentally pass it on to the delegate. this.arg = undefined$1; } return ContinueSentinel; } }; // Regardless of whether this script is executing as a CommonJS module // or not, return the runtime object so that we can declare the variable // regeneratorRuntime in the outer scope, which allows this module to be // injected easily by `bin/regenerator --include-runtime script.js`. return exports; }( // If this script is executing as a CommonJS module, use module.exports // as the regeneratorRuntime namespace. Otherwise create a new empty // object. Either way, the resulting object will be used to initialize // the regeneratorRuntime variable at the top of this file. module.exports )); try { regeneratorRuntime = runtime; } catch (accidentalStrictMode) { // This module should not be running in strict mode, so the above // assignment should always work unless something is misconfigured. Just // in case runtime.js accidentally runs in strict mode, we can escape // strict mode using a global Function call. This could conceivably fail // if a Content Security Policy forbids using Function, but in that case // the proper solution is to fix the accidental strict mode problem. If // you've misconfigured your bundler to force strict mode and applied a // CSP to forbid Function, and you're not willing to fix either of those // problems, please detail your unique predicament in a GitHub issue. Function("r", "regeneratorRuntime = r")(runtime); } }); var _marked = /*#__PURE__*/runtime_1.mark(scanAtlasTexels); var ATLAS_BG_COLOR = /*#__PURE__*/new THREE.Color('#000000'); var VERTEX_SHADER = "\n attribute vec4 faceInfo;\n attribute vec2 uv2;\n\n varying vec4 vFaceInfo;\n uniform vec2 uvOffset;\n\n void main() {\n vFaceInfo = faceInfo;\n\n gl_Position = projectionMatrix * vec4(\n uv2 + uvOffset, // UV2 is the actual position on map\n 0,\n 1.0\n );\n }\n"; var FRAGMENT_SHADER = "\n varying vec4 vFaceInfo;\n\n void main() {\n // encode the face information in map\n gl_FragColor = vFaceInfo;\n }\n"; function getTexelInfo(atlasMap, texelIndex) { // get current atlas face we are filling up var texelInfoBase = texelIndex * 4; var texelPosU = atlasMap.data[texelInfoBase]; var texelPosV = atlasMap.data[texelInfoBase + 1]; var texelItemEnc = atlasMap.data[texelInfoBase + 2]; var texelFaceEnc = atlasMap.data[texelInfoBase + 3]; // skip computation if this texel is empty if (texelItemEnc === 0) { return null; } // otherwise, proceed with computation and exit var texelItemIndex = Math.round(texelItemEnc - 1); var texelFaceIndex = Math.round(texelFaceEnc - 1); if (texelItemIndex < 0 || texelItemIndex >= atlasMap.items.length) { throw new Error("incorrect atlas map item data: " + texelPosU + ", " + texelPosV + ", " + texelItemEnc + ", " + texelFaceEnc); } var atlasItem = atlasMap.items[texelItemIndex]; if (texelFaceIndex < 0 || texelFaceIndex >= atlasItem.faceCount) { throw new Error("incorrect atlas map face data: " + texelPosU + ", " + texelPosV + ", " + texelItemEnc + ", " + texelFaceEnc); } // report the viable texel to be baked // @todo reduce malloc? return { texelIndex: texelIndex, originalMesh: atlasItem.originalMesh, originalBuffer: atlasItem.originalBuffer, faceIndex: texelFaceIndex, pU: texelPosU, pV: texelPosV }; } // iterate through all texels function scanAtlasTexels(atlasMap, onFinished) { var atlasWidth, atlasHeight, totalTexelCount, texelCount, retryCount, currentCounter, texelInfo; return runtime_1.wrap(function scanAtlasTexels$(_context) { while (1) { switch (_context.prev = _context.next) { case 0: atlasWidth = atlasMap.width, atlasHeight = atlasMap.height; totalTexelCount = atlasWidth * atlasHeight; texelCount = 0; retryCount = 0; case 4: if (!(texelCount < totalTexelCount)) { _context.next = 16; break; } // get current texel info and increment currentCounter = texelCount; texelCount += 1; texelInfo = getTexelInfo(atlasMap, currentCounter); // try to keep looking for a reasonable number of cycles // before yielding empty result if (!(!texelInfo && retryCount < 100)) { _context.next = 11; break; } retryCount += 1; return _context.abrupt("continue", 4); case 11: // yield out with either a found texel or nothing retryCount = 0; _context.next = 14; return texelInfo; case 14: _context.next = 4; break; case 16: onFinished(); case 17: case "end": return _context.stop(); } } }, _marked); } // write out original face geometry info into the atlas map // each texel corresponds to: (quadX, quadY, quadIndex) // where quadX and quadY are 0..1 representing a spot in the original quad // and quadIndex is 1-based to distinguish from blank space // which allows to find original 3D position/normal/etc for that texel // (quad index is int stored as float, but precision should be good enough) // NOTE: each atlas texture sample corresponds to the position of // the physical midpoint of the corresponding rendered texel // (e.g. if lightmap was shown pixelated); this works well // with either bilinear or nearest filtering // @todo consider stencil buffer, or just 8bit texture function getInputItems(sceneItems) { var items = []; for (var _iterator = _createForOfIteratorHelperLoose(sceneItems), _step; !(_step = _iterator()).done;) { var mesh = _step.value; if (!(mesh instanceof THREE.Mesh)) { continue; } // ignore anything that is not a buffer geometry // @todo warn on legacy geometry objects if they seem to have UV2? var buffer = mesh.geometry; if (!(buffer instanceof THREE.BufferGeometry)) { continue; } // if we see this object, it is not read-only and hence must have UV2 var uv2Attr = buffer.attributes.uv2; if (!uv2Attr) { throw new Error('expecting UV2 coordinates on writable lightmapped mesh'); } // gather other necessary attributes and ensure compatible data // @todo support non-indexed meshes // @todo support interleaved attributes var indexAttr = buffer.index; if (!indexAttr) { throw new Error('expected face index array'); } var faceVertexCount = indexAttr.array.length; if (!(uv2Attr instanceof THREE.BufferAttribute)) { throw new Error('expected uv2 attribute'); } // index of this item once it will be added to list var itemIndex = items.length; var atlasPosAttr = new THREE.Float32BufferAttribute(faceVertexCount * 3, 3); var atlasUV2Attr = new THREE.Float32BufferAttribute(faceVertexCount * 2, 2); var atlasFaceInfoAttr = new THREE.Float32BufferAttribute(faceVertexCount * 4, 4); // unroll indexed mesh data into non-indexed buffer so that we can encode per-face data // (otherwise vertices may be shared, and hence cannot have face-specific info in vertex attribute) var indexData = indexAttr.array; for (var faceVertexIndex = 0; faceVertexIndex < faceVertexCount; faceVertexIndex += 1) { var faceMod = faceVertexIndex % 3; // not bothering to copy vertex position data because we don't need it // (however, we cannot omit the 'position' attribute altogether) atlasUV2Attr.copyAt(faceVertexIndex, uv2Attr, indexData[faceVertexIndex]); // position of vertex in face: (0,0), (0,1) or (1,0) var facePosX = faceMod & 1; var facePosY = (faceMod & 2) >> 1; // mesh index + face index combined into one var faceIndex = (faceVertexIndex - faceMod) / 3; atlasFaceInfoAttr.setXYZW(faceVertexIndex, facePosX, facePosY, itemIndex + 1, // encode item index (1-based to indicate filled texels) faceIndex + 1 // encode face index (1-based to indicate filled texels) ); } // this buffer is disposed of when atlas scene is unmounted var atlasBuffer = new THREE.BufferGeometry(); atlasBuffer.setAttribute('position', atlasPosAttr); atlasBuffer.setAttribute('uv2', atlasUV2Attr); atlasBuffer.setAttribute('faceInfo', atlasFaceInfoAttr); items.push({ faceCount: faceVertexCount / 3, perFaceBuffer: atlasBuffer, originalMesh: mesh, originalBuffer: buffer }); } return items; } function createOrthoScene(inputItems) { var orthoScene = new THREE.Scene(); orthoScene.name = 'Atlas mapper ortho scene'; for (var _iterator2 = _createForOfIteratorHelperLoose(inputItems), _step2; !(_step2 = _iterator2()).done;) { var geom = _step2.value; var mesh = new THREE.Mesh(); mesh.frustumCulled = false; // skip bounding box checks (not applicable and logic gets confused) mesh.geometry = geom.perFaceBuffer; mesh.material = new THREE.ShaderMaterial({ side: THREE.DoubleSide, vertexShader: VERTEX_SHADER, fragmentShader: FRAGMENT_SHADER }); orthoScene.add(mesh); } return orthoScene; } function renderAtlas(gl, width, height, sceneItems) { var inputItems = getInputItems(sceneItems); var orthoScene = createOrthoScene(inputItems); // set up simple rasterization for pure data consumption var orthoTarget = new THREE.WebGLRenderTarget(width, height, { type: THREE.FloatType, magFilter: THREE.NearestFilter, minFilter: THREE.NearestFilter, depthBuffer: false, generateMipmaps: false }); var orthoCamera = new THREE.OrthographicCamera(0, 1, 1, 0, 0, 1); var orthoData = new Float32Array(width * height * 4); // save existing renderer state var prevClearColor = new THREE.Color(); gl.getClearColor(prevClearColor); var prevClearAlpha = gl.getClearAlpha(); var prevAutoClear = gl.autoClear; // produce the output gl.setRenderTarget(orthoTarget); gl.setClearColor(ATLAS_BG_COLOR, 0); // alpha must be zero gl.autoClear = true; gl.render(orthoScene, orthoCamera); // restore previous renderer state gl.setRenderTarget(null); gl.setClearColor(prevClearColor, prevClearAlpha); gl.autoClear = prevAutoClear; gl.readRenderTargetPixels(orthoTarget, 0, 0, width, height, orthoData); // clean up orthoTarget.dispose(); return { width: width, height: height, texture: new THREE.DataTexture(orthoData, width, height, THREE.RGBAFormat, THREE.FloatType), data: orthoData, // no need to expose references to atlas-specific geometry clones items: inputItems.map(function (_ref) { var faceCount = _ref.faceCount, originalMesh = _ref.originalMesh, originalBuffer = _ref.originalBuffer; return { faceCount: faceCount, originalMesh: originalMesh, originalBuffer: originalBuffer }; }) }; } var tmpOrigin = /*#__PURE__*/new THREE.Vector3(); var tmpU = /*#__PURE__*/new THREE.Vector3(); var tmpV = /*#__PURE__*/new THREE.Vector3(); var tmpNormal = /*#__PURE__*/new THREE.Vector3(); var tmpLookAt = /*#__PURE__*/new THREE.Vector3(); var tmpProbeBox = /*#__PURE__*/new THREE.Vector4(); var tmpPrevClearColor = /*#__PURE__*/new THREE.Color(); // used inside blending function var tmpNormalOther = /*#__PURE__*/new THREE.Vector3(); var PROBE_BG_ZERO = /*#__PURE__*/new THREE.Color('#000000'); var PROBE_BG_FULL = /*#__PURE__*/new THREE.Color('#ffffff'); var PROBE_BATCH_COUNT = 8; var DEFAULT_LIGHT_PROBE_SETTINGS = { targetSize: 16, offset: 0, near: 0.05, far: 50 }; // bilinear interpolation of normals in triangle, with normalization function setBlendedNormal(out, origNormalArray, origIndexArray, faceVertexBase, pU, pV) { // barycentric coordinate for origin point var pO = 1 - pU - pV; out.fromArray(origNormalArray, origIndexArray[faceVertexBase] * 3); out.multiplyScalar(pO); tmpNormalOther.fromArray(origNormalArray, origIndexArray[faceVertexBase + 1] * 3); out.addScaledVector(tmpNormalOther, pU); tmpNormalOther.fromArray(origNormalArray, origIndexArray[faceVertexBase + 2] * 3); out.addScaledVector(tmpNormalOther, pV); out.normalize(); } function setUpProbeUp(probeCam, mesh, origin, normal, uDir) { probeCam.position.copy(origin); probeCam.up.copy(uDir); // add normal to accumulator and look at it tmpLookAt.copy(normal); tmpLookAt.add(origin); probeCam.lookAt(tmpLookAt); probeCam.scale.set(1, 1, 1); // then, transform camera into world space probeCam.applyMatrix4(mesh.matrixWorld); } function setUpProbeSide(probeCam, mesh, origin, normal, direction, directionSign) { probeCam.position.copy(origin); // up is the normal probeCam.up.copy(normal); // add normal to accumulator and look at it tmpLookAt.copy(origin); tmpLookAt.addScaledVector(direction, directionSign); probeCam.lookAt(tmpLookAt); probeCam.scale.set(1, 1, 1); // then, transform camera into world space probeCam.applyMatrix4(mesh.matrixWorld); } // for each pixel in the individual probe viewport, compute contribution to final tally // (edges are weaker because each pixel covers less of a view angle) // @todo perform weighted pixel averaging/etc all in this file function generatePixelAreaLookup(probeTargetSize) { var probePixelCount = probeTargetSize * probeTargetSize; var lookup = new Array(probePixelCount); var probePixelBias = 0.5 / probeTargetSize; for (var py = 0; py < probeTargetSize; py += 1) { // compute offset from center (with a bias for target pixel size) var dy = py / probeTargetSize - 0.5 + probePixelBias; for (var px = 0; px < probeTargetSize; px += 1) { // compute offset from center (with a bias for target pixel size) var dx = px / probeTargetSize - 0.5 + probePixelBias; // compute multiplier as affected by inclination of corresponding ray var span = Math.hypot(dx * 2, dy * 2); var hypo = Math.hypot(span, 1); var area = 1 / hypo; lookup[py * probeTargetSize + px] = area; } } return lookup; } // collect and combine pixel aggregate from rendered probe viewports // (this ignores the alpha channel from viewports) var tmpTexelRGBA = /*#__PURE__*/new THREE.Vector4(); function readTexel(readLightProbe, probePixelAreaLookup) { var r = 0, g = 0, b = 0, totalDivider = 0; for (var _iterator = _createForOfIteratorHelperLoose(readLightProbe()), _step; !(_step = _iterator()).done;) { var _step$value = _step.value, probeData = _step$value.rgbaData, rowPixelStride = _step$value.rowPixelStride, box = _step$value.probeBox, originX = _step$value.originX, originY = _step$value.originY; var probeTargetSize = box.z; // assuming width is always full var rowStride = rowPixelStride * 4; var rowStart = box.y * rowStride + box.x * 4; var totalMax = (box.y + box.w) * rowStride; var py = originY; while (rowStart < totalMax) { var rowMax = rowStart + box.z * 4; var px = originX; for (var i = rowStart; i < rowMax; i += 4) { // compute multiplier as affected by inclination of corresponding ray var area = probePixelAreaLookup[py * probeTargetSize + px]; r += area * probeData[i]; g += area * probeData[i + 1]; b += area * probeData[i + 2]; totalDivider += area; px += 1; } rowStart += rowStride; py += 1; } } // alpha is set later tmpTexelRGBA.x = r / totalDivider; tmpTexelRGBA.y = g / totalDivider; tmpTexelRGBA.z = b / totalDivider; } // @todo use light sphere for AO (double-check that far-extent is radius + epsilon) function withLightProbe(_x, _x2, _x3, _x4) { return _withLightProbe.apply(this, arguments); } function _withLightProbe() { _withLightProbe = _asyncToGenerator( /*#__PURE__*/runtime_1.mark(function _callee(aoMode, aoDistance, settings, taskCallback) { var probeTargetSize, probeBgColor, halfSize, targetWidth, targetHeight, probePixelAreaLookup, probeTarget, rtFov, rtAspect, rtNear, rtFar, probeCam, probeData, batchTexels, renderLightProbeBatch; return runtime_1.wrap(function _callee$(_context4) { while (1) { switch (_context4.prev = _context4.next) { case 0: probeTargetSize = settings.targetSize; probeBgColor = aoMode ? PROBE_BG_FULL : PROBE_BG_ZERO; halfSize = probeTargetSize / 2; targetWidth = probeTargetSize * 4; // 4 tiles across targetHeight = probeTargetSize * 2 * PROBE_BATCH_COUNT; // 2 tiles x batch count // @todo make this async? probePixelAreaLookup = generatePixelAreaLookup(probeTargetSize); // set up simple rasterization for pure data consumption probeTarget = new THREE.WebGLRenderTarget(targetWidth, targetHeight, { type: THREE.FloatType, magFilter: THREE.NearestFilter, minFilter: THREE.NearestFilter, generateMipmaps: false }); rtFov = 90; // view cone must be quarter of the hemisphere rtAspect = 1; // square render target rtNear = settings.near; rtFar = aoMode ? aoDistance : settings.far; // in AO mode, lock far-extent to requested distance probeCam = new THREE.PerspectiveCamera(rtFov, rtAspect, rtNear, rtFar); probeData = new Float32Array(targetWidth * targetHeight * 4); batchTexels = new Array(PROBE_BATCH_COUNT); // @todo ensure there is biasing to be in middle of texel physical square renderLightProbeBatch = /*#__PURE__*/runtime_1.mark(function renderLightProbeBatch(gl, lightScene, texelIterator) { var prevClearAlpha, prevAutoClear, prevToneMapping, batchItem, texelResult, _texelResult$value, texelIndex, originalMesh, originalBuffer, faceIndex, pU, pV, batchOffsetY, origIndexArray, origPosArray, origNormalArray, faceVertexBase, _loop, _batchItem, _ret; return runtime_1.wrap(function renderLightProbeBatch$(_context3) { while (1) { switch (_context3.prev = _context3.next) { case 0: // save existing renderer state gl.getClearColor(tmpPrevClearColor); prevClearAlpha = gl.getClearAlpha(); prevAutoClear = gl.autoClear; prevToneMapping = gl.toneMapping; // reset tone mapping output to linear because we are aggregating unprocessed luminance output gl.toneMapping = THREE.LinearToneMapping; // set up render target for overall clearing // (bypassing setViewport means that the renderer conveniently preserves previous state) probeTarget.scissorTest = true; probeTarget.scissor.set(0, 0, targetWidth, targetHeight); probeTarget.viewport.set(0, 0, targetWidth, targetHeight); gl.setRenderTarget(probeTarget); gl.autoClear = false; // clear entire area gl.setClearColor(probeBgColor, 1); gl.clear(true, true, false); batchItem = 0; case 13: if (!(batchItem < PROBE_BATCH_COUNT)) { _context3.next = 71; break; } texelResult = texelIterator.next(); if (!(!texelResult.done && texelResult.value)) { _context3.next = 66; break; } _texelResult$value = texelResult.value, texelIndex = _texelResult$value.texelIndex, originalMesh = _texelResult$value.originalMesh, originalBuffer = _texelResult$value.originalBuffer, faceIndex = _texelResult$value.faceIndex, pU = _texelResult$value.pU, pV = _texelResult$value.pV; // each batch is 2 tiles high batchOffsetY = batchItem * probeTargetSize * 2; // save which texel is being rendered for later reporting batchTexels[batchItem] = texelIndex; if (originalBuffer.index) { _context3.next = 21; break; } throw new Error('expected indexed mesh'); case 21: // read vertex position for this face and interpolate along U and V axes origIndexArray = originalBuffer.index.array; origPosArray = originalBuffer.attributes.position.array; origNormalArray = originalBuffer.attributes.normal.array; // get face vertex positions faceVertexBase = faceIndex * 3; tmpOrigin.fromArray(origPosArray, origIndexArray[faceVertexBase] * 3); tmpU.fromArray(origPosArray, origIndexArray[faceVertexBase + 1] * 3); tmpV.fromArray(origPosArray, origIndexArray[faceVertexBase + 2] * 3); // compute face dimensions tmpU.sub(tmpOrigin); tmpV.sub(tmpOrigin); // set camera to match texel, first in mesh-local space tmpOrigin.addScaledVector(tmpU, pU); tmpOrigin.addScaledVector(tmpV, pV); // compute normal and cardinal directions // (done per texel for linear interpolation of normals) setBlendedNormal(tmpNormal, origNormalArray, origIndexArray, faceVertexBase, pU, pV); // use consistent "left" and "up" directions based on just the normal if (tmpNormal.x === 0 && tmpNormal.y === 0) { tmpU.set(1, 0, 0); } else { tmpU.set(0, 0, 1); } tmpV.crossVectors(tmpNormal, tmpU); tmpV.normalize(); tmpU.crossVectors(tmpNormal, tmpV); tmpU.normalize(); // nudge the light probe position based on requested offset tmpOrigin.addScaledVector(tmpNormal, settings.offset); // proceed with the renders setUpProbeUp(probeCam, originalMesh, tmpOrigin, tmpNormal, tmpU); probeTarget.viewport.set(0, batchOffsetY + probeTargetSize, probeTargetSize, probeTargetSize); probeTarget.scissor.set(0, batchOffsetY + probeTargetSize, probeTargetSize, probeTargetSize); gl.setRenderTarget(probeTarget); // propagate latest target params gl.render(lightScene, probeCam); // sides only need the upper half of rendered view, so we set scissor accordingly setUpProbeSide(probeCam, originalMesh, tmpOrigin, tmpNormal, tmpU, 1); probeTarget.viewport.set(0, batchOffsetY, probeTargetSize, probeTargetSize); probeTarget.scissor.set(0, batchOffsetY + halfSize, probeTargetSize, halfSize); gl.setRenderTarget(probeTarget); // propagate latest target params gl.render(lightScene, probeCam); setUpProbeSide(probeCam, originalMesh, tmpOrigin, tmpNormal, tmpU, -1); probeTarget.viewport.set(probeTargetSize, batchOffsetY, probeTargetSize, probeTargetSiz