UNPKG

@re-shell/cli

Version:

Full-stack development platform uniting microservices and microfrontends. Build complete applications with .NET (ASP.NET Core Web API, Minimal API), Java (Spring Boot, Quarkus, Micronaut, Vert.x), Rust (Actix-Web, Warp, Rocket, Axum), Python (FastAPI, Dja

1,263 lines (1,259 loc) 55.9 kB
"use strict"; var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) { if (k2 === undefined) k2 = k; var desc = Object.getOwnPropertyDescriptor(m, k); if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) { desc = { enumerable: true, get: function() { return m[k]; } }; } Object.defineProperty(o, k2, desc); }) : (function(o, m, k, k2) { if (k2 === undefined) k2 = k; o[k2] = m[k]; })); var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) { Object.defineProperty(o, "default", { enumerable: true, value: v }); }) : function(o, v) { o["default"] = v; }); var __importStar = (this && this.__importStar) || (function () { var ownKeys = function(o) { ownKeys = Object.getOwnPropertyNames || function (o) { var ar = []; for (var k in o) if (Object.prototype.hasOwnProperty.call(o, k)) ar[ar.length] = k; return ar; }; return ownKeys(o); }; return function (mod) { if (mod && mod.__esModule) return mod; var result = {}; if (mod != null) for (var k = ownKeys(mod), i = 0; i < k.length; i++) if (k[i] !== "default") __createBinding(result, mod, k[i]); __setModuleDefault(result, mod); return result; }; })(); Object.defineProperty(exports, "__esModule", { value: true }); exports.PerformanceProfiler = void 0; exports.profilePerformance = profilePerformance; exports.createBenchmark = createBenchmark; const events_1 = require("events"); const fs = __importStar(require("fs-extra")); const path = __importStar(require("path")); const os = __importStar(require("os")); const child_process_1 = require("child_process"); class PerformanceProfiler extends events_1.EventEmitter { constructor(config = {}) { super(); this.metrics = []; this.optimizationToActionItem = (optimization) => ({ id: optimization.id, title: optimization.title, description: optimization.description, priority: optimization.priority, effort: optimization.implementation.timeEstimate, timeline: optimization.implementation.timeEstimate, owner: 'development-team', dependencies: optimization.implementation.dependencies || [], success: { metrics: [optimization.type], targets: optimization.metrics.after, validation: optimization.implementation.steps } }); this.config = { profileDuration: 60000, sampleInterval: 1000, includeMemoryProfile: true, includeCpuProfile: true, includeIOProfile: true, includeNetworkProfile: false, outputPath: './performance-reports', generateReport: true, optimization: { analyzeBundleSize: true, analyzeDependencies: true, analyzeStartupTime: true, analyzeMemoryUsage: true, analyzeBuildTime: true, generateRecommendations: true }, thresholds: { cpuUsage: 80, memoryUsage: 500, startupTime: 2000, buildTime: 60000, bundleSize: 10, networkLatency: 1000 }, benchmarks: [], ...config }; this.startTime = new Date(); this.endTime = new Date(); } async profile(projectPath) { this.emit('profile:start', { project: projectPath }); this.startTime = new Date(); try { // Start metrics collection await this.startMetricsCollection(); // Run benchmarks if configured const benchmarks = await this.runBenchmarks(projectPath); // Stop metrics collection this.stopMetricsCollection(); this.endTime = new Date(); // Analyze performance data const analysis = await this.analyzePerformance(); // Generate optimization recommendations const optimizations = await this.generateOptimizations(projectPath); // Create performance summary const summary = this.generateSummary(analysis, optimizations); const profile = { config: this.config, startTime: this.startTime, endTime: this.endTime, duration: this.endTime.getTime() - this.startTime.getTime(), metrics: this.metrics, benchmarks, analysis, optimizations, summary }; this.emit('profile:complete', profile); return profile; } catch (error) { this.emit('profile:error', error); throw error; } } async startMetricsCollection() { this.emit('metrics:start'); this.intervalId = setInterval(async () => { try { const metrics = await this.collectMetrics(); this.metrics.push(metrics); this.emit('metrics:collected', metrics); } catch (error) { this.emit('metrics:error', error); } }, this.config.sampleInterval); // Stop collection after configured duration setTimeout(() => { this.stopMetricsCollection(); }, this.config.profileDuration); } stopMetricsCollection() { if (this.intervalId) { clearInterval(this.intervalId); this.intervalId = undefined; } this.emit('metrics:stop'); } async collectMetrics() { const timestamp = new Date(); const memUsage = process.memoryUsage(); const cpuUsage = process.cpuUsage(); return { timestamp, duration: timestamp.getTime() - this.startTime.getTime(), cpu: await this.collectCpuMetrics(cpuUsage), memory: this.collectMemoryMetrics(memUsage), io: await this.collectIOMetrics(), network: this.config.includeNetworkProfile ? await this.collectNetworkMetrics() : undefined, process: this.collectProcessMetrics(), system: this.collectSystemMetrics() }; } async collectCpuMetrics(cpuUsage) { const loadAverage = os.loadavg(); const cpus = os.cpus(); return { usage: this.calculateCpuUsage(cpuUsage), userTime: cpuUsage.user / 1000, systemTime: cpuUsage.system / 1000, idleTime: 0, // Will be calculated based on sampling loadAverage, cores: cpus.length }; } calculateCpuUsage(cpuUsage) { // Simple CPU usage calculation const totalTime = cpuUsage.user + cpuUsage.system; return Math.min(100, (totalTime / 1000000) * 100); // Convert to percentage } collectMemoryMetrics(memUsage) { const totalMemory = os.totalmem(); const freeMemory = os.freemem(); return { used: totalMemory - freeMemory, total: totalMemory, heap: { used: memUsage.heapUsed, total: memUsage.heapTotal, limit: this.getHeapLimit(), available: this.getHeapLimit() - memUsage.heapUsed }, external: memUsage.external, rss: memUsage.rss, arrayBuffers: memUsage.arrayBuffers || 0 }; } getHeapLimit() { // Get V8 heap size limit try { const v8 = require('v8'); const heapStats = v8.getHeapStatistics(); return heapStats.heap_size_limit; } catch { return 1024 * 1024 * 1024; // Default 1GB } } async collectIOMetrics() { // Mock I/O metrics - in real implementation, this would use system calls return { read: { bytes: 0, operations: 0, time: 0, throughput: 0 }, write: { bytes: 0, operations: 0, time: 0, throughput: 0 }, total: { bytes: 0, operations: 0, time: 0, efficiency: 100 } }; } async collectNetworkMetrics() { // Mock network metrics - in real implementation, this would monitor network activity return { requests: 0, totalBytes: 0, averageLatency: 0, errors: 0, connections: 0 }; } collectProcessMetrics() { return { pid: process.pid, ppid: process.ppid, startTime: new Date(Date.now() - process.uptime() * 1000), uptime: process.uptime() * 1000, threads: 1, // Node.js is single-threaded (main thread) handles: 0 // Platform specific }; } collectSystemMetrics() { return { platform: os.platform(), arch: os.arch(), nodeVersion: process.version, v8Version: process.versions.v8, totalMemory: os.totalmem(), freeMemory: os.freemem(), uptime: os.uptime(), loadAverage: os.loadavg() }; } async runBenchmarks(projectPath) { this.emit('benchmarks:start'); const results = []; for (const benchmark of this.config.benchmarks || []) { try { const result = await this.runBenchmark(benchmark, projectPath); results.push(result); this.emit('benchmark:complete', result); } catch (error) { this.emit('benchmark:error', { benchmark, error }); } } this.emit('benchmarks:complete', results); return results; } async runBenchmark(config, projectPath) { const iterations = config.iterations || 5; const warmupIterations = config.warmupIterations || 1; const results = []; // Warmup runs for (let i = 0; i < warmupIterations; i++) { await this.executeBenchmarkIteration(config, projectPath, i - warmupIterations); } // Actual benchmark runs for (let i = 0; i < iterations; i++) { const result = await this.executeBenchmarkIteration(config, projectPath, i); results.push(result); } const statistics = this.calculateBenchmarkStatistics(results); const baseline = await this.loadBenchmarkBaseline(config.name); const regression = baseline ? this.analyzeRegression(statistics, baseline) : undefined; return { name: config.name, command: config.command, iterations, results, statistics, baseline, regression }; } async executeBenchmarkIteration(config, projectPath, iteration) { const startTime = Date.now(); const memoryBefore = process.memoryUsage(); try { const result = (0, child_process_1.execSync)(config.command, { cwd: projectPath, timeout: config.timeout || 30000, env: { ...process.env, ...config.env }, stdio: 'pipe' }); const endTime = Date.now(); const memoryAfter = process.memoryUsage(); return { iteration, duration: endTime - startTime, exitCode: 0, memory: { timestamp: new Date(), heap: { used: memoryAfter.heapUsed, total: memoryAfter.heapTotal, limit: this.getHeapLimit(), available: this.getHeapLimit() - memoryAfter.heapUsed }, rss: memoryAfter.rss, external: memoryAfter.external, total: memoryAfter.rss + memoryAfter.external }, cpu: 0, // Would need process.cpuUsage() tracking success: true }; } catch (error) { const endTime = Date.now(); return { iteration, duration: endTime - startTime, exitCode: error.status || 1, memory: { timestamp: new Date(), heap: { used: memoryBefore.heapUsed, total: memoryBefore.heapTotal, limit: this.getHeapLimit(), available: this.getHeapLimit() - memoryBefore.heapUsed }, rss: memoryBefore.rss, external: memoryBefore.external, total: memoryBefore.rss + memoryBefore.external }, cpu: 0, success: false, error: error.message }; } } calculateBenchmarkStatistics(results) { const durations = results.map(r => r.duration); const successfulResults = results.filter(r => r.success); durations.sort((a, b) => a - b); const mean = durations.reduce((sum, val) => sum + val, 0) / durations.length; const median = durations[Math.floor(durations.length / 2)]; const min = Math.min(...durations); const max = Math.max(...durations); const variance = durations.reduce((sum, val) => sum + Math.pow(val - mean, 2), 0) / durations.length; const stdDev = Math.sqrt(variance); const percentiles = {}; [50, 75, 90, 95, 99].forEach(p => { const index = Math.floor((p / 100) * durations.length); percentiles[p] = durations[Math.min(index, durations.length - 1)]; }); return { mean, median, min, max, stdDev, variance, percentiles, successRate: (successfulResults.length / results.length) * 100, throughput: successfulResults.length > 0 ? 1000 / mean : 0 }; } async loadBenchmarkBaseline(benchmarkName) { try { const baselinePath = path.join(this.config.outputPath || '', 'baselines', `${benchmarkName}.json`); if (await fs.pathExists(baselinePath)) { return await fs.readJson(baselinePath); } } catch (error) { // Baseline not found or corrupted } return undefined; } analyzeRegression(statistics, baseline) { const change = ((statistics.mean - baseline.mean) / baseline.mean) * 100; const significant = Math.abs(change) > 5; // 5% threshold for significance let trend; if (change > 5) { trend = 'degrading'; } else if (change < -5) { trend = 'improving'; } else { trend = 'stable'; } return { significant, change, confidence: significant ? 95 : 50, trend, pValue: significant ? 0.01 : 0.5 }; } async analyzePerformance() { this.emit('analysis:start'); const bottlenecks = this.identifyBottlenecks(); const patterns = this.identifyPatterns(); const trends = this.analyzeTrends(); const anomalies = this.detectAnomalies(); const efficiency = this.calculateEfficiency(); this.emit('analysis:complete'); return { bottlenecks, patterns, trends, anomalies, efficiency }; } identifyBottlenecks() { const bottlenecks = []; if (this.metrics.length === 0) return bottlenecks; // Analyze CPU bottlenecks const avgCpuUsage = this.metrics.reduce((sum, m) => sum + m.cpu.usage, 0) / this.metrics.length; if (avgCpuUsage > this.config.thresholds.cpuUsage) { bottlenecks.push({ type: 'cpu', severity: avgCpuUsage > 95 ? 'critical' : avgCpuUsage > 85 ? 'high' : 'medium', description: `High CPU usage detected (${avgCpuUsage.toFixed(1)}%)`, impact: `System responsiveness may be affected`, metrics: { avgCpuUsage }, recommendations: [ 'Optimize CPU-intensive operations', 'Implement code profiling to identify hot spots', 'Consider worker threads for heavy computations' ] }); } // Analyze memory bottlenecks const avgMemoryUsage = this.metrics.reduce((sum, m) => sum + m.memory.used, 0) / this.metrics.length; const avgMemoryMB = avgMemoryUsage / (1024 * 1024); if (avgMemoryMB > this.config.thresholds.memoryUsage) { bottlenecks.push({ type: 'memory', severity: avgMemoryMB > 1000 ? 'critical' : avgMemoryMB > 750 ? 'high' : 'medium', description: `High memory usage detected (${avgMemoryMB.toFixed(1)}MB)`, impact: `Risk of out-of-memory errors and performance degradation`, metrics: { avgMemoryMB }, recommendations: [ 'Implement memory profiling to identify leaks', 'Optimize data structures and algorithms', 'Use streaming for large data processing', 'Implement garbage collection optimization' ] }); } // Analyze heap bottlenecks const avgHeapUsage = this.metrics.reduce((sum, m) => sum + (m.memory.heap.used / m.memory.heap.total), 0) / this.metrics.length * 100; if (avgHeapUsage > 80) { bottlenecks.push({ type: 'memory', severity: avgHeapUsage > 95 ? 'critical' : avgHeapUsage > 90 ? 'high' : 'medium', description: `High heap usage detected (${avgHeapUsage.toFixed(1)}%)`, impact: `Frequent garbage collection may impact performance`, metrics: { avgHeapUsage }, recommendations: [ 'Reduce object allocations in hot paths', 'Implement object pooling for frequently created objects', 'Optimize data structures to reduce memory footprint' ] }); } return bottlenecks; } identifyPatterns() { // Pattern analysis would be more sophisticated in a real implementation const patterns = []; if (this.metrics.length < 10) return patterns; // Memory growth pattern const memoryGrowth = this.analyzeMemoryGrowth(); if (memoryGrowth.significant) { patterns.push({ name: 'Memory Growth', frequency: memoryGrowth.occurrences, impact: memoryGrowth.rate > 1 ? 'negative' : 'neutral', description: `Memory usage is ${memoryGrowth.rate > 0 ? 'increasing' : 'decreasing'} over time`, occurrences: [{ timestamp: new Date(), duration: this.metrics.length * this.config.sampleInterval, context: 'Overall profiling period', metrics: { growthRate: memoryGrowth.rate } }] }); } return patterns; } analyzeMemoryGrowth() { if (this.metrics.length < 2) return { significant: false, rate: 0, occurrences: 0 }; const firstMemory = this.metrics[0].memory.used; const lastMemory = this.metrics[this.metrics.length - 1].memory.used; const duration = this.metrics[this.metrics.length - 1].timestamp.getTime() - this.metrics[0].timestamp.getTime(); const rate = ((lastMemory - firstMemory) / firstMemory) * 100; const significant = Math.abs(rate) > 10; // 10% change threshold return { significant, rate, occurrences: significant ? 1 : 0 }; } analyzeTrends() { const trends = []; if (this.metrics.length < 5) return trends; // CPU trend const cpuTrend = this.calculateTrend(this.metrics.map(m => m.cpu.usage)); trends.push({ metric: 'CPU Usage', direction: cpuTrend.direction, rate: cpuTrend.rate, confidence: cpuTrend.confidence, significance: cpuTrend.significant }); // Memory trend const memoryValues = this.metrics.map(m => m.memory.used / (1024 * 1024)); const memoryTrend = this.calculateTrend(memoryValues); trends.push({ metric: 'Memory Usage', direction: memoryTrend.direction, rate: memoryTrend.rate, confidence: memoryTrend.confidence, significance: memoryTrend.significant }); return trends; } calculateTrend(values) { if (values.length < 3) { return { direction: 'stable', rate: 0, confidence: 0, significant: false }; } // Simple linear regression const n = values.length; const x = Array.from({ length: n }, (_, i) => i); const sumX = x.reduce((a, b) => a + b, 0); const sumY = values.reduce((a, b) => a + b, 0); const sumXY = x.reduce((sum, xi, i) => sum + xi * values[i], 0); const sumXX = x.reduce((sum, xi) => sum + xi * xi, 0); const slope = (n * sumXY - sumX * sumY) / (n * sumXX - sumX * sumX); let direction; if (Math.abs(slope) < 0.1) { direction = 'stable'; } else if (slope > 0) { direction = 'increasing'; } else { direction = 'decreasing'; } return { direction, rate: Math.abs(slope), confidence: Math.min(95, Math.abs(slope) * 100), significant: Math.abs(slope) > 0.5 }; } detectAnomalies() { const anomalies = []; if (this.metrics.length < 10) return anomalies; // Detect CPU spikes const cpuValues = this.metrics.map(m => m.cpu.usage); const cpuMean = cpuValues.reduce((a, b) => a + b, 0) / cpuValues.length; const cpuStdDev = Math.sqrt(cpuValues.reduce((sum, val) => sum + Math.pow(val - cpuMean, 2), 0) / cpuValues.length); this.metrics.forEach((metric, index) => { const deviation = Math.abs(metric.cpu.usage - cpuMean) / cpuStdDev; if (deviation > 2) { // 2 standard deviations anomalies.push({ timestamp: metric.timestamp, type: metric.cpu.usage > cpuMean ? 'spike' : 'drop', metric: 'CPU Usage', value: metric.cpu.usage, expectedValue: cpuMean, deviation, severity: deviation > 3 ? 'critical' : deviation > 2.5 ? 'high' : 'medium', description: `CPU usage ${metric.cpu.usage > cpuMean ? 'spike' : 'drop'} detected`, possibleCauses: [ 'Intensive computation', 'Background process interference', 'Resource contention', 'System load' ] }); } }); return anomalies; } calculateEfficiency() { if (this.metrics.length === 0) { return { overall: 0, cpu: 0, memory: 0, io: 0, improvement: 0 }; } // Calculate CPU efficiency (lower usage for same output = higher efficiency) const avgCpuUsage = this.metrics.reduce((sum, m) => sum + m.cpu.usage, 0) / this.metrics.length; const cpuEfficiency = Math.max(0, 100 - avgCpuUsage); // Calculate memory efficiency (lower usage = higher efficiency) const avgMemoryUsage = this.metrics.reduce((sum, m) => sum + (m.memory.heap.used / m.memory.heap.total * 100), 0) / this.metrics.length; const memoryEfficiency = Math.max(0, 100 - avgMemoryUsage); // I/O efficiency (mock calculation) const ioEfficiency = 85; // Mock value const overall = (cpuEfficiency + memoryEfficiency + ioEfficiency) / 3; const improvement = Math.max(0, 100 - overall); return { overall, cpu: cpuEfficiency, memory: memoryEfficiency, io: ioEfficiency, improvement }; } async generateOptimizations(projectPath) { this.emit('optimization:start'); const optimizations = []; if (this.config.optimization?.analyzeStartupTime) { optimizations.push(...await this.analyzeStartupOptimizations(projectPath)); } if (this.config.optimization?.analyzeMemoryUsage) { optimizations.push(...await this.analyzeMemoryOptimizations()); } if (this.config.optimization?.analyzeBundleSize) { optimizations.push(...await this.analyzeBundleOptimizations(projectPath)); } if (this.config.optimization?.analyzeDependencies) { optimizations.push(...await this.analyzeDependencyOptimizations(projectPath)); } if (this.config.optimization?.analyzeBuildTime) { optimizations.push(...await this.analyzeBuildOptimizations(projectPath)); } this.emit('optimization:complete', optimizations); return optimizations; } async analyzeStartupOptimizations(projectPath) { const optimizations = []; // Startup time optimization optimizations.push({ id: 'startup-lazy-loading', type: 'startup', priority: 'high', title: 'Implement Lazy Loading for Heavy Dependencies', description: 'Defer loading of heavy dependencies until they are actually needed to improve startup time', impact: { performance: 30, memory: 20, size: 0, speed: 35 }, effort: 'medium', implementation: { steps: [ 'Identify heavy dependencies using bundle analysis', 'Implement dynamic imports for non-critical modules', 'Use lazy loading patterns for command-specific dependencies', 'Add loading states for better user experience' ], code: ` // Before import heavyLibrary from 'heavy-library'; // After const loadHeavyLibrary = () => import('heavy-library'); `, automatizable: true, timeEstimate: '2-4 hours' }, benefits: [ 'Faster startup time', 'Reduced memory usage on startup', 'Better user experience', 'Lower resource consumption' ], risks: [ 'Slight delay when feature is first used', 'Complexity in error handling', 'Potential for loading state management issues' ], metrics: { before: { startupTime: 2000 }, after: { startupTime: 1400 }, improvement: { startupTime: 30 } } }); // Code splitting optimization optimizations.push({ id: 'startup-code-splitting', type: 'startup', priority: 'medium', title: 'Implement Command-Based Code Splitting', description: 'Split code by commands to load only necessary code for each operation', impact: { performance: 25, memory: 15, size: 10, speed: 30 }, effort: 'high', implementation: { steps: [ 'Analyze command usage patterns', 'Split commands into separate modules', 'Implement dynamic command loading', 'Update CLI router to handle dynamic loading' ], config: { 'webpack.config.js': { optimization: { splitChunks: { chunks: 'all', cacheGroups: { commands: { test: /src\/commands/, name: 'commands', chunks: 'all' } } } } } }, automatizable: false, timeEstimate: '1-2 days' }, benefits: [ 'Faster startup for specific commands', 'Reduced bundle size per command', 'Better caching strategies', 'Improved maintainability' ], risks: [ 'Increased complexity', 'Potential for loading errors', 'Build process complications' ], metrics: { before: { bundleSize: 10 }, after: { bundleSize: 8 }, improvement: { bundleSize: 20 } } }); return optimizations; } async analyzeMemoryOptimizations() { const optimizations = []; if (this.metrics.length === 0) return optimizations; const avgHeapUsage = this.metrics.reduce((sum, m) => sum + (m.memory.heap.used / m.memory.heap.total), 0) / this.metrics.length; if (avgHeapUsage > 0.7) { optimizations.push({ id: 'memory-object-pooling', type: 'memory', priority: 'high', title: 'Implement Object Pooling for Frequently Created Objects', description: 'Reduce garbage collection pressure by reusing objects instead of creating new ones', impact: { performance: 20, memory: 40, size: 0, speed: 15 }, effort: 'medium', implementation: { steps: [ 'Identify frequently allocated objects', 'Create object pools for these objects', 'Implement pool management (acquire/release)', 'Monitor pool effectiveness' ], code: ` class ObjectPool<T> { private pool: T[] = []; private createFn: () => T; constructor(createFn: () => T, initialSize = 10) { this.createFn = createFn; for (let i = 0; i < initialSize; i++) { this.pool.push(createFn()); } } acquire(): T { return this.pool.pop() || this.createFn(); } release(obj: T): void { this.pool.push(obj); } } `, automatizable: false, timeEstimate: '4-6 hours' }, benefits: [ 'Reduced garbage collection', 'Lower memory allocation rate', 'Improved performance consistency', 'Better memory utilization' ], risks: [ 'Complexity in object lifecycle management', 'Potential memory leaks if not handled properly', 'Debugging complexity' ], metrics: { before: { heapUsage: avgHeapUsage * 100 }, after: { heapUsage: (avgHeapUsage * 0.7) * 100 }, improvement: { heapUsage: 30 } } }); } return optimizations; } async analyzeBundleOptimizations(projectPath) { const optimizations = []; try { // Check if there's a package.json to analyze const packageJsonPath = path.join(projectPath, 'package.json'); if (await fs.pathExists(packageJsonPath)) { const packageJson = await fs.readJson(packageJsonPath); // Check for heavy dependencies const deps = { ...packageJson.dependencies, ...packageJson.devDependencies }; const heavyDeps = Object.keys(deps).filter(dep => ['webpack', 'typescript', 'eslint', 'babel'].some(heavy => dep.includes(heavy))); if (heavyDeps.length > 0) { optimizations.push({ id: 'bundle-tree-shaking', type: 'bundle', priority: 'medium', title: 'Enable Tree Shaking for Unused Code Elimination', description: 'Remove unused code from dependencies to reduce bundle size', impact: { performance: 15, memory: 10, size: 30, speed: 20 }, effort: 'low', implementation: { steps: [ 'Enable ES modules in package.json', 'Configure bundler for tree shaking', 'Mark side-effect-free modules', 'Analyze bundle to verify improvements' ], config: { 'package.json': { type: 'module', sideEffects: false } }, automatizable: true, timeEstimate: '1-2 hours' }, benefits: [ 'Smaller bundle size', 'Faster loading times', 'Reduced memory usage', 'Better performance' ], risks: [ 'Potential for breaking changes', 'Build configuration complexity' ], metrics: { before: { bundleSize: 10 }, after: { bundleSize: 7 }, improvement: { bundleSize: 30 } } }); } } } catch (error) { // Ignore errors in bundle analysis } return optimizations; } async analyzeDependencyOptimizations(projectPath) { const optimizations = []; try { const packageJsonPath = path.join(projectPath, 'package.json'); if (await fs.pathExists(packageJsonPath)) { const packageJson = await fs.readJson(packageJsonPath); const deps = packageJson.dependencies || {}; // Look for optimization opportunities if (Object.keys(deps).length > 20) { optimizations.push({ id: 'dependency-audit', type: 'dependency', priority: 'medium', title: 'Audit and Optimize Dependencies', description: 'Review and optimize project dependencies to reduce bundle size and improve performance', impact: { performance: 25, memory: 20, size: 35, speed: 30 }, effort: 'medium', implementation: { steps: [ 'Run dependency analyzer to identify unused dependencies', 'Remove unused dependencies', 'Replace heavy dependencies with lighter alternatives', 'Bundle analyze to verify improvements' ], dependencies: ['webpack-bundle-analyzer', 'depcheck'], automatizable: true, timeEstimate: '2-4 hours' }, benefits: [ 'Reduced bundle size', 'Faster installation', 'Lower security attack surface', 'Improved maintainability' ], risks: [ 'Potential for breaking changes', 'Need for thorough testing' ], metrics: { before: { dependencies: Object.keys(deps).length }, after: { dependencies: Math.floor(Object.keys(deps).length * 0.8) }, improvement: { dependencies: 20 } } }); } } } catch (error) { // Ignore errors in dependency analysis } return optimizations; } async analyzeBuildOptimizations(projectPath) { const optimizations = []; // Build time optimization optimizations.push({ id: 'build-incremental', type: 'build', priority: 'high', title: 'Implement Incremental Build System', description: 'Use incremental builds to only rebuild changed files and their dependencies', impact: { performance: 50, memory: 10, size: 0, speed: 60 }, effort: 'high', implementation: { steps: [ 'Set up build cache system', 'Implement file change detection', 'Configure incremental TypeScript compilation', 'Add cache invalidation strategies' ], config: { 'tsconfig.json': { compilerOptions: { incremental: true, tsBuildInfoFile: '.tsbuildinfo' } } }, automatizable: true, timeEstimate: '4-8 hours' }, benefits: [ 'Dramatically faster builds', 'Improved developer experience', 'Reduced CI/CD time', 'Lower resource usage' ], risks: [ 'Cache invalidation complexity', 'Initial setup complexity', 'Storage requirements for cache' ], metrics: { before: { buildTime: 60000 }, after: { buildTime: 15000 }, improvement: { buildTime: 75 } } }); return optimizations; } generateSummary(analysis, optimizations) { const overallScore = this.calculateOverallScore(analysis); const categories = { cpu: this.calculateCategoryScore('cpu', analysis), memory: this.calculateCategoryScore('memory', analysis), io: this.calculateCategoryScore('io', analysis), startup: this.calculateCategoryScore('startup', analysis) }; const improvements = this.generateImprovements(optimizations); const warnings = this.generateWarnings(analysis); const achievements = this.generateAchievements(analysis); return { overall: overallScore, categories, improvements, warnings, achievements }; } calculateOverallScore(analysis) { const score = analysis.efficiency.overall; return { score, grade: this.scoreToGrade(score), trend: 'stable', // Would be calculated from historical data change: 0 // Would be calculated from previous assessments }; } calculateCategoryScore(category, analysis) { let score = 100; // Reduce score based on bottlenecks in this category const categoryBottlenecks = analysis.bottlenecks.filter(b => category === 'startup' ? b.type === 'startup' : b.type === category); for (const bottleneck of categoryBottlenecks) { switch (bottleneck.severity) { case 'critical': score -= 30; break; case 'high': score -= 20; break; case 'medium': score -= 10; break; case 'low': score -= 5; break; } } score = Math.max(0, score); return { score, grade: this.scoreToGrade(score), trend: 'stable', change: 0 }; } scoreToGrade(score) { if (score >= 90) return 'A'; if (score >= 80) return 'B'; if (score >= 70) return 'C'; if (score >= 60) return 'D'; return 'F'; } generateImprovements(optimizations) { return optimizations.slice(0, 5).map(opt => ({ area: opt.type, potential: opt.impact.performance, effort: opt.effort, impact: opt.priority === 'critical' || opt.priority === 'high' ? 'high' : opt.priority === 'medium' ? 'medium' : 'low' })); } generateWarnings(analysis) { const warnings = []; for (const bottleneck of analysis.bottlenecks) { if (bottleneck.severity === 'critical' || bottleneck.severity === 'high') { warnings.push({ severity: bottleneck.severity, message: bottleneck.description, metric: bottleneck.type, threshold: this.getThresholdForType(bottleneck.type), current: Object.values(bottleneck.metrics)[0] || 0 }); } } return warnings; } getThresholdForType(type) { switch (type) { case 'cpu': return this.config.thresholds.cpuUsage; case 'memory': return this.config.thresholds.memoryUsage; case 'startup': return this.config.thresholds.startupTime; case 'build': return this.config.thresholds.buildTime; default: return 100; } } generateAchievements(analysis) { const achievements = []; if (analysis.efficiency.overall > 80) { achievements.push({ title: 'High Efficiency', description: 'System is running with high efficiency', metric: 'Overall Efficiency', value: analysis.efficiency.overall }); } if (analysis.anomalies.length === 0) { achievements.push({ title: 'Stable Performance', description: 'No performance anomalies detected', metric: 'Anomalies', value: 0 }); } return achievements; } async generateReport(profile) { const executive = this.generateExecutiveSummary(profile); const technical = this.generateTechnicalDetails(profile); const actionPlan = this.generateActionPlan(profile); const appendices = this.generateAppendices(profile); const report = { profile, executive, technical, actionPlan, appendices, timestamp: new Date() }; if (this.config.generateReport) { await this.saveReport(report); } return report; } generateExecutiveSummary(profile) { const criticalIssues = profile.analysis.bottlenecks.filter(b => b.severity === 'critical').length; return { overallScore: profile.summary.overall.score, keyFindings: [ `Overall performance score: ${profile.summary.overall.score}/100`, `${profile.analysis.bottlenecks.length} performance bottlenecks identified`, `${profile.optimizations.length} optimization opportunities found` ], criticalIssues, potentialSavings: { timeReduction: profile.optimizations.reduce((sum, opt) => sum + (opt.impact.speed || 0), 0), memoryReduction: profile.optimizations.reduce((sum, opt) => sum + (opt.impact.memory || 0), 0), costSavings: 0, // Would be calculated based on resource costs efficiencyGain: profile.optimizations.reduce((sum, opt) => sum + (opt.impact.performance || 0), 0) / profile.optimizations.length }, recommendations: profile.optimizations.slice(0, 3).map(opt => ({ priority: opt.priority, category: opt.type, impact: `${opt.impact.performance}% performance improvement`, effort: opt.effort, timeline: opt.implementation.timeEstimate, roi: opt.impact.performance / (opt.effort === 'low' ? 1 : opt.effort === 'medium' ? 2 : 3) })) }; } generateTechnicalDetails(profile) { return { methodology: 'Performance profiling using Node.js process metrics and custom benchmarking', environment: { platform: os.platform(), nodeVersion: process.version, cpuInfo: os.cpus(), memory: os.totalmem(), timestamp: profile.startTime }, dataCollection: { duration: profile.duration, sampleCount: profile.metrics.length, sampleRate: this.config.sampleInterval || 1000, metrics: ['CPU', 'Memory', 'I/O', 'Process', 'System'] }, analysis: { algorithms: ['Linear regression', 'Statistical analysis', 'Anomaly detection'], thresholds: this.config.thresholds, statisticalMethods: ['Standard deviation', 'Percentile analysis', 'Trend analysis'], confidence: 95 }, limitations: [ 'I/O metrics are simulated in this implementation', 'Network metrics are optional and may not be available', 'Historical trend analysis requires multiple profiling sessions' ] }; } generateActionPlan(profile) { const critical = profile.optimizations.filter(opt => opt.priority === 'critical'); const high = profile.optimizations.filter(opt => opt.priority === 'high'); const medium = profile.optimizations.filter(opt => opt.priority === 'medium'); return { immediate: critical.map(this.optimizationToActionItem), shortTerm: high.map(this.optimizationToActionItem), longTerm: medium.map(this.optimizationToActionItem), monitoring: { frequency: 'weekly', metrics: ['CPU usage', 'Memory usage', 'Startup time', 'Build time'], alerts: [ { metric: 'CPU usage', threshold: this.config.thresholds.cpuUsage, severity: 'high', action: 'Investigate high CPU usage' }, { metric: 'Memory usage', threshold: this.config.thresholds.memoryUsage, severity: 'high', action: 'Investigate memory leaks' } ], reporting: { frequency: 'weekly', format: 'summary', recipients: ['development-team'] } } }; } generateAppendices(profile) { return { rawData: profile.metrics, benchmarkData: profile.benchmarks, statisticalAnalysis: { sampleSize: profile.metrics.length, confidence: 95, margin: 5, significance: 0.05, correlations: {} // Would be calculated from actual data }, methodologyDetails: 'Detailed methodology and analysis techniques used for performance profiling' }; } async saveReport(