UNPKG

@rayyamhk/matrix

Version:

A professional, comprehensive and high-performance library for you to manipulate matrices.

106 lines (78 loc) 3.9 kB
"use strict"; function _slicedToArray(arr, i) { return _arrayWithHoles(arr) || _iterableToArrayLimit(arr, i) || _unsupportedIterableToArray(arr, i) || _nonIterableRest(); } function _nonIterableRest() { throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } function _unsupportedIterableToArray(o, minLen) { if (!o) return; if (typeof o === "string") return _arrayLikeToArray(o, minLen); var n = Object.prototype.toString.call(o).slice(8, -1); if (n === "Object" && o.constructor) n = o.constructor.name; if (n === "Map" || n === "Set") return Array.from(o); if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray(o, minLen); } function _arrayLikeToArray(arr, len) { if (len == null || len > arr.length) len = arr.length; for (var i = 0, arr2 = new Array(len); i < len; i++) { arr2[i] = arr[i]; } return arr2; } function _iterableToArrayLimit(arr, i) { var _i = arr == null ? null : typeof Symbol !== "undefined" && arr[Symbol.iterator] || arr["@@iterator"]; if (_i == null) return; var _arr = []; var _n = true; var _d = false; var _s, _e; try { for (_i = _i.call(arr); !(_n = (_s = _i.next()).done); _n = true) { _arr.push(_s.value); if (i && _arr.length === i) break; } } catch (err) { _d = true; _e = err; } finally { try { if (!_n && _i["return"] != null) _i["return"](); } finally { if (_d) throw _e; } } return _arr; } function _arrayWithHoles(arr) { if (Array.isArray(arr)) return arr; } var _require = require('../../Error'), INVALID_MATRIX = _require.INVALID_MATRIX, NO_UNIQUE_SOLUTION = _require.NO_UNIQUE_SOLUTION, INVALID_SQUARE_MATRIX = _require.INVALID_SQUARE_MATRIX, SIZE_INCOMPATIBLE = _require.SIZE_INCOMPATIBLE; /** * Solve system of linear equations Ax = y using LU decomposition. * If there is no unique solutions, an error is thrown. * @memberof Matrix * @static * @param {Matrix} L - Any n x n square Matrix * @param {Matrix} y - Any n x 1 Matrix * @returns {Matrix} n x 1 Matrix which is the solution of Ax = y */ function solve(A, b) { if (!(A instanceof this) || !(b instanceof this)) { throw new Error(INVALID_MATRIX); } if (!A.isSquare()) { throw new Error(INVALID_SQUARE_MATRIX); } var _A$size = A.size(), _A$size2 = _slicedToArray(_A$size, 2), aRow = _A$size2[0], aCol = _A$size2[1]; var _b$size = b.size(), _b$size2 = _slicedToArray(_b$size, 2), bRow = _b$size2[0], bCol = _b$size2[1]; if (aCol !== bRow || bCol !== 1) { throw new Error(SIZE_INCOMPATIBLE); } var EPSILON = 1 / (Math.pow(10, A._digit) * 2); var _this$LU = this.LU(A, true), _this$LU2 = _slicedToArray(_this$LU, 2), P = _this$LU2[0], LU = _this$LU2[1]; var matrixLU = LU._matrix; var matrixB = b._matrix; for (var i = aRow - 1; i >= 0; i--) { if (Math.abs(matrixLU[i][i]) < EPSILON) { throw new Error(NO_UNIQUE_SOLUTION); } } var clonedVector = new Array(bRow); var coefficients = new Array(bRow); for (var _i2 = 0; _i2 < bRow; _i2++) { // eslint-disable-next-line prefer-destructuring clonedVector[_i2] = matrixB[P[_i2]][0]; } for (var _i3 = 0; _i3 < aRow; _i3++) { var summation = 0; for (var j = 0; j < _i3; j++) { summation += coefficients[j] * matrixLU[_i3][j]; } coefficients[_i3] = clonedVector[_i3] - summation; } for (var _i4 = aRow - 1; _i4 >= 0; _i4--) { var _summation = 0; for (var _j = _i4 + 1; _j < aRow; _j++) { _summation += matrixLU[_i4][_j] * clonedVector[_j]; } clonedVector[_i4] = (coefficients[_i4] - _summation) / matrixLU[_i4][_i4]; } for (var _i5 = 0; _i5 < bRow; _i5++) { coefficients[_i5] = [clonedVector[_i5]]; } return new this(coefficients); } ; module.exports = solve;