UNPKG

@rawify/vector3

Version:

The RAW JavaScript 3D Vector library

342 lines (218 loc) 8.24 kB
# Vector3.js [![NPM Package](https://img.shields.io/npm/v/@rawify/vector3.svg?style=flat)](https://www.npmjs.com/package/@rawify/vector3 "View this project on npm") [![MIT license](http://img.shields.io/badge/license-MIT-brightgreen.svg)](http://opensource.org/licenses/MIT) Vector3.js is a 3D vector library for JavaScript, providing a variety of vector operations used in 3D graphics, physics simulations, and geometric computations. ## Features - Basic vector operations: addition, subtraction, scaling, negation - Geometric functions: dot product, cross product, projection - Utility functions: normalization, magnitude, distance, linear interpolation (lerp) - Matrix transformations and function applications on vectors - Support for creating vectors from arrays or objects ## Installation You can install `Vector3.js` via npm: ```bash npm install @rawify/vector3 ``` Or with yarn: ```bash yarn add @rawify/vector3 ``` Alternatively, download or clone the repository: ```bash git clone https://github.com/rawify/Vector3.js ``` ## Usage Include the `vector3.min.js` file in your project: ```html <script src="path/to/vector3.min.js"></script> ``` Or in a Node.js project: ```javascript const Vector3 = require('@rawify/vector3'); ``` or ```javascript import Vector3 from '@rawify/vector3'; ``` ### Creating a Vector Vectors can be created using `new Vector3` or the `Vector3` function: ```javascript let v1 = Vector3(1, 2, 3); let v2 = new Vector3(4, 5, 6); ``` You can also initialize vectors from arrays or objects: ```javascript let v3 = new Vector3([1, 2, 3]); let v4 = new Vector3({ x: 4, y: 5, z: 6 }); ``` ## Methods ### `add(v)` Adds the vector `v` to the current vector. ```javascript let v1 = new Vector3(1, 2, 3); let v2 = new Vector3(4, 5, 6); let result = v1.add(v2); // {x: 5, y: 7, z: 9} ``` ### `sub(v)` Subtracts the vector `v` from the current vector. ```javascript let result = v1.sub(v2); // {x: -3, y: -3, z: -3} ``` ### `neg()` Negates the current vector (flips the direction). ```javascript let result = v1.neg(); // {x: -1, y: -2, z: -3} ``` ### `scale(s)` Scales the current vector by a scalar `s`. ```javascript let result = v1.scale(2); // {x: 2, y: 4, z: 6} ``` ### `prod(v)` Calculates the Hadamard (element-wise) product of the current vector and `v`. ```javascript let result = v1.prod(v2); // {x: 4, y: 10, z: 18} ``` ### `dot(v)` Computes the [dot product](https://raw.org/book/linear-algebra/dot-product/) between the current vector and `v`. ```javascript let result = v1.dot(v2); // 32 ``` ### `cross(v)` Calculates the [3D cross product](https://raw.org/book/linear-algebra/3d-cross-product/) between the current vector and `v`. ```javascript let result = v1.cross(v2); // {x: -3, y: 6, z: -3} ``` ### `projectTo(v)` Projects the current vector onto the vector `v` using [vector projection](https://raw.org/book/linear-algebra/dot-product/). ```javascript let result = v1.projectTo(v2); // Projection of v1 onto v2 ``` ### `rejectFrom(v)` Finds the orthogonal [vector rejection](https://raw.org/book/linear-algebra/dot-product/#reject) of the current vector from the vector `v`. ### `reflect(v)` Determines the [vector reflection](https://raw.org/book/linear-algebra/dot-product/#reflect) of the current vector across the vector `n`. ### `refract(n, eta)` Determines the [vector refraction](https://raw.org/book/linear-algebra/dot-product/#refract) of the current **unit vector** across a surface with **unit normal** `n`, using the index ratio `eta = η_in / η_out` (like from air η_in=1.0 to water η_out=1.33). ```javascript let n = new Vector3(0, 1, 0); // Surface normal pointing up let eta = 1.0 / 1.33; // Air to glass let result = v1.refract(n, eta); // Refraction of v1 across n ``` Returns a new unit vector representing the **refracted direction**, or `null` if **total internal reflection** occurs. ### `norm()` Returns the magnitude or length (Euclidean norm) of the current vector. ```javascript let result = v1.norm(); // 3.741 ``` ### `norm2()` Returns the squared magnitude or length (norm squared) of the current vector. ```javascript let result = v1.norm2(); // 14 ``` ### `normalize()` Returns a normalized vector (unit vector) of the current vector. ```javascript let result = v1.normalize(); // {x: 0.267, y: 0.534, z: 0.801} ``` ### `distance(v)` Calculates the Euclidean distance between the current vector and `v`. ```javascript let result = v1.distance(v2); // 5.196 ``` ### `set(v)` Sets the values of the current vector to match the vector `v`. ```javascript v1.set(v2); // v1 is now {x: 4, y: 5, z: 6} ``` ### `rotateX(angle)` Rotates the vector around the **X-axis** by the given angle (in radians): ```javascript let v = new Vector3(1, 2, 3); v.rotateX(Math.PI / 2); // Rotates v 90° around the X-axis ``` ### `rotateY(angle)` Rotates the vector around the **Y-axis** by the given angle (in radians): ```javascript let v = new Vector3(1, 2, 3); v.rotateY(Math.PI / 2); // Rotates v 90° around the Y-axis ``` ### `rotateZ(angle)` Rotates the vector around the **Z-axis** by the given angle (in radians): ```javascript let v = new Vector3(1, 2, 3); v.rotateZ(Math.PI / 2); // Rotates v 90° around the Z-axis ``` ### `applyMatrix(M)` Applies a transformation matrix `M` to the current vector. ```javascript let matrix = [ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] ]; let result = v1.applyMatrix(matrix); // Applies matrix transformation ``` If you need to make more CSS related matrix transforms, have a look at [UnifiedTransform.js](https://github.com/rawify/UnifiedTransform.js). ### `apply(fn, v)` Applies a function `fn` (such as `Math.abs`, `Math.min`, `Math.max`) to the components of the current vector and an optional vector `v`. ```javascript let result1 = v1.apply(Math.min, v2); // Determines the minimum of v1 and v2 on each component let result2 = v1.apply(Math.max, v2); // Determines the maximum of v1 and v2 on each component let result3 = v1.apply(Math.round); // Rounds the components of the vector let result4 = v1.apply(Math.floor); // Floors the components of the vector let result4 = v1.apply(x => Math.min(upper, Math.max(lower, x))); // Clamps the component to the interval [lower, upper] ``` ### `toArray()` Returns the current vector as an array `[x, y, z]`. ```javascript let result = v1.toArray(); // [1, 2, 3] ``` ### `clone()` Returns a clone of the current vector. ```javascript let result = v1.clone(); // A new vector with the same x, y, and z values as v1 ``` ### `equals(v)` Checks if the current vector is equal to the vector `v`. ```javascript let result = v1.equals(v2); // false ``` ### `isUnit()` Determines if the current vector is a normalized unit vector. ### `lerp(v, t)` Performs a linear interpolation between the current vector and `v` by the factor `t`. ```javascript let result = v1.lerp(v2, 0.5); // {x: 2.5, y: 3.5, z: 4.5} ``` ### `toString()` Gets a string representation of the current vector. ## Static Methods ### `Vector3.random()` Generates a vector with random x, y, and z values between 0 and 1. ```javascript let randomVector = Vector3.random(); // {x: 0.67, y: 0.45, z: 0.12} ``` ### `Vector3.fromPoints(a, b)` Creates a vector from two points `a` and `b`. ```javascript let result = Vector3.fromPoints({x: 1, y: 1, z: 1}, {x: 4, y: 5, z: 6}); // {x: 3, y: 4, z: 5} ``` ### `Vector3.fromBarycentric(A, B, C, u, v)` Given a triangle (A, B, C) and a barycentric coordinate (u, v[, w = 1 - u - v]) calculate the cartesian coordinate in R^3. ## Coding Style As every library I publish, Vector2.js is also built to be as small as possible after compressing it with Google Closure Compiler in advanced mode. Thus the coding style orientates a little on maxing-out the compression rate. Please make sure you keep this style if you plan to extend the library. ## Building the library After cloning the Git repository run: ``` npm install npm run build ``` ## Run a test Testing the source against the shipped test suite is as easy as ``` npm run test ``` ## Copyright and Licensing Copyright (c) 2025, [Robert Eisele](https://raw.org/) Licensed under the MIT license.