UNPKG

@radzztnzx/rbail

Version:

Pro Bails based by Whiskeysockets, Modified by RadzzOffc

142 lines 6.1 kB
import { createCipheriv, createDecipheriv, createHash, createHmac, randomBytes } from 'crypto'; import * as curve from 'libsignal/src/curve.js'; import { KEY_BUNDLE_TYPE } from '../Defaults/index.js'; // insure browser & node compatibility const { subtle } = globalThis.crypto; /** prefix version byte to the pub keys, required for some curve crypto functions */ export const generateSignalPubKey = (pubKey) => pubKey.length === 33 ? pubKey : Buffer.concat([KEY_BUNDLE_TYPE, pubKey]); export const Curve = { generateKeyPair: () => { const { pubKey, privKey } = curve.generateKeyPair(); return { private: Buffer.from(privKey), // remove version byte public: Buffer.from(pubKey.slice(1)) }; }, sharedKey: (privateKey, publicKey) => { const shared = curve.calculateAgreement(generateSignalPubKey(publicKey), privateKey); return Buffer.from(shared); }, sign: (privateKey, buf) => curve.calculateSignature(privateKey, buf), verify: (pubKey, message, signature) => { try { curve.verifySignature(generateSignalPubKey(pubKey), message, signature); return true; } catch (error) { return false; } } }; export const signedKeyPair = (identityKeyPair, keyId) => { const preKey = Curve.generateKeyPair(); const pubKey = generateSignalPubKey(preKey.public); const signature = Curve.sign(identityKeyPair.private, pubKey); return { keyPair: preKey, signature, keyId }; }; const GCM_TAG_LENGTH = 128 >> 3; /** * encrypt AES 256 GCM; * where the tag tag is suffixed to the ciphertext * */ export function aesEncryptGCM(plaintext, key, iv, additionalData) { const cipher = createCipheriv('aes-256-gcm', key, iv); cipher.setAAD(additionalData); return Buffer.concat([cipher.update(plaintext), cipher.final(), cipher.getAuthTag()]); } /** * decrypt AES 256 GCM; * where the auth tag is suffixed to the ciphertext * */ export function aesDecryptGCM(ciphertext, key, iv, additionalData) { const decipher = createDecipheriv('aes-256-gcm', key, iv); // decrypt additional adata const enc = ciphertext.slice(0, ciphertext.length - GCM_TAG_LENGTH); const tag = ciphertext.slice(ciphertext.length - GCM_TAG_LENGTH); // set additional data decipher.setAAD(additionalData); decipher.setAuthTag(tag); return Buffer.concat([decipher.update(enc), decipher.final()]); } export function aesEncryptCTR(plaintext, key, iv) { const cipher = createCipheriv('aes-256-ctr', key, iv); return Buffer.concat([cipher.update(plaintext), cipher.final()]); } export function aesDecryptCTR(ciphertext, key, iv) { const decipher = createDecipheriv('aes-256-ctr', key, iv); return Buffer.concat([decipher.update(ciphertext), decipher.final()]); } /** decrypt AES 256 CBC; where the IV is prefixed to the buffer */ export function aesDecrypt(buffer, key) { return aesDecryptWithIV(buffer.slice(16, buffer.length), key, buffer.slice(0, 16)); } /** decrypt AES 256 CBC */ export function aesDecryptWithIV(buffer, key, IV) { const aes = createDecipheriv('aes-256-cbc', key, IV); return Buffer.concat([aes.update(buffer), aes.final()]); } // encrypt AES 256 CBC; where a random IV is prefixed to the buffer export function aesEncrypt(buffer, key) { const IV = randomBytes(16); const aes = createCipheriv('aes-256-cbc', key, IV); return Buffer.concat([IV, aes.update(buffer), aes.final()]); // prefix IV to the buffer } // encrypt AES 256 CBC with a given IV export function aesEncrypWithIV(buffer, key, IV) { const aes = createCipheriv('aes-256-cbc', key, IV); return Buffer.concat([aes.update(buffer), aes.final()]); // prefix IV to the buffer } // sign HMAC using SHA 256 export function hmacSign(buffer, key, variant = 'sha256') { return createHmac(variant, key).update(buffer).digest(); } export function sha256(buffer) { return createHash('sha256').update(buffer).digest(); } export function md5(buffer) { return createHash('md5').update(buffer).digest(); } // HKDF key expansion export async function hkdf(buffer, expandedLength, info) { // Normalize to a Uint8Array whose underlying buffer is a regular ArrayBuffer (not ArrayBufferLike) // Cloning via new Uint8Array(...) guarantees the generic parameter is ArrayBuffer which satisfies WebCrypto types. const inputKeyMaterial = new Uint8Array(buffer instanceof Uint8Array ? buffer : new Uint8Array(buffer)); // Set default values if not provided const salt = info.salt ? new Uint8Array(info.salt) : new Uint8Array(0); const infoBytes = info.info ? new TextEncoder().encode(info.info) : new Uint8Array(0); // Import the input key material (cast to BufferSource to appease TS DOM typings) const importedKey = await subtle.importKey('raw', inputKeyMaterial, { name: 'HKDF' }, false, [ 'deriveBits' ]); // Derive bits using HKDF const derivedBits = await subtle.deriveBits({ name: 'HKDF', hash: 'SHA-256', salt: salt, info: infoBytes }, importedKey, expandedLength * 8 // Convert bytes to bits ); return Buffer.from(derivedBits); } export async function derivePairingCodeKey(pairingCode, salt) { // Convert inputs to formats Web Crypto API can work with const encoder = new TextEncoder(); const pairingCodeBuffer = encoder.encode(pairingCode); const saltBuffer = new Uint8Array(salt instanceof Uint8Array ? salt : new Uint8Array(salt)); // Import the pairing code as key material const keyMaterial = await subtle.importKey('raw', pairingCodeBuffer, { name: 'PBKDF2' }, false, [ 'deriveBits' ]); // Derive bits using PBKDF2 with the same parameters // 2 << 16 = 131,072 iterations const derivedBits = await subtle.deriveBits({ name: 'PBKDF2', salt: saltBuffer, iterations: 2 << 16, hash: 'SHA-256' }, keyMaterial, 32 * 8 // 32 bytes * 8 = 256 bits ); return Buffer.from(derivedBits); } //# sourceMappingURL=crypto.js.map