UNPKG

@qpd-v/mcp-server-ragdocs

Version:

A Model Context Protocol server for fetching and storing documentation in a vector database, enabling semantic search and retrieval to augment LLM capabilities with relevant documentation context.

284 lines (229 loc) 7.01 kB
# mcp-server-ragdocs A Model Context Protocol (MCP) server that enables semantic search and retrieval of documentation using a vector database (Qdrant). This server allows you to add documentation from URLs or local files and then search through them using natural language queries. ## Version Current version: 0.1.6 ## Features - Add documentation from URLs or local files - Store documentation in a vector database for semantic search - Search through documentation using natural language - List all documentation sources ## Installation Install globally using npm: ```bash npm install -g @qpd-v/mcp-server-ragdocs ``` This will install the server in your global npm directory, which you'll need for the configuration steps below. ## Requirements - Node.js 16 or higher - Qdrant (either local or cloud) - One of the following for embeddings: - Ollama running locally (default, free) - OpenAI API key (optional, paid) ## Qdrant Setup Options ### Option 1: Local Qdrant 1. Using Docker (recommended): ```bash docker run -p 6333:6333 -p 6334:6334 qdrant/qdrant ``` 2. Or download from [Qdrant's website](https://qdrant.tech/documentation/quick-start/) ### Option 2: Qdrant Cloud 1. Create an account at [Qdrant Cloud](https://cloud.qdrant.io/) 2. Create a new cluster 3. Get your cluster URL and API key from the dashboard 4. Use these in your configuration (see Configuration section below) ## Configuration The server can be used with both Cline and Claude Desktop. Configuration differs slightly between them: ### Cline Configuration Add to your Cline settings file (`%AppData%\Code\User\globalStorage\rooveterinaryinc.roo-cline\settings\cline_mcp_settings.json`): 1. Using npm global install (recommended): ```json { "mcpServers": { "ragdocs": { "command": "node", "args": ["C:/Users/YOUR_USERNAME/AppData/Roaming/npm/node_modules/@qpd-v/mcp-server-ragdocs/build/index.js"], "env": { "QDRANT_URL": "http://127.0.0.1:6333", "EMBEDDING_PROVIDER": "ollama", "OLLAMA_URL": "http://localhost:11434" } } } } ``` For OpenAI instead of Ollama: ```json { "mcpServers": { "ragdocs": { "command": "node", "args": ["C:/Users/YOUR_USERNAME/AppData/Roaming/npm/node_modules/@qpd-v/mcp-server-ragdocs/build/index.js"], "env": { "QDRANT_URL": "http://127.0.0.1:6333", "EMBEDDING_PROVIDER": "openai", "OPENAI_API_KEY": "your-openai-api-key" } } } } ``` 2. Using local development setup: ```json { "mcpServers": { "ragdocs": { "command": "node", "args": ["PATH_TO_PROJECT/mcp-ragdocs/build/index.js"], "env": { "QDRANT_URL": "http://127.0.0.1:6333", "EMBEDDING_PROVIDER": "ollama", "OLLAMA_URL": "http://localhost:11434" } } } } ``` ### Claude Desktop Configuration Add to your Claude Desktop config file: - Windows: `%AppData%\Claude\claude_desktop_config.json` - macOS: `~/Library/Application Support/Claude/claude_desktop_config.json` 1. Windows Setup with Ollama (using full paths): ```json { "mcpServers": { "ragdocs": { "command": "C:\\Program Files\\nodejs\\node.exe", "args": [ "C:\\Users\\YOUR_USERNAME\\AppData\\Roaming\\npm\\node_modules\\@qpd-v/mcp-server-ragdocs\\build\\index.js" ], "env": { "QDRANT_URL": "http://127.0.0.1:6333", "EMBEDDING_PROVIDER": "ollama", "OLLAMA_URL": "http://localhost:11434" } } } } ``` Windows Setup with OpenAI: ```json { "mcpServers": { "ragdocs": { "command": "C:\\Program Files\\nodejs\\node.exe", "args": [ "C:\\Users\\YOUR_USERNAME\\AppData\\Roaming\\npm\\node_modules\\@qpd-v/mcp-server-ragdocs\\build\\index.js" ], "env": { "QDRANT_URL": "http://127.0.0.1:6333", "EMBEDDING_PROVIDER": "openai", "OPENAI_API_KEY": "your-openai-api-key" } } } } ``` 2. macOS Setup with Ollama: ```json { "mcpServers": { "ragdocs": { "command": "/usr/local/bin/node", "args": [ "/usr/local/lib/node_modules/@qpd-v/mcp-server-ragdocs/build/index.js" ], "env": { "QDRANT_URL": "http://127.0.0.1:6333", "EMBEDDING_PROVIDER": "ollama", "OLLAMA_URL": "http://localhost:11434" } } } } ``` ### Qdrant Cloud Configuration For either Cline or Claude Desktop, when using Qdrant Cloud, modify the env section: With Ollama: ```json { "env": { "QDRANT_URL": "https://your-cluster-url.qdrant.tech", "QDRANT_API_KEY": "your-qdrant-api-key", "EMBEDDING_PROVIDER": "ollama", "OLLAMA_URL": "http://localhost:11434" } } ``` With OpenAI: ```json { "env": { "QDRANT_URL": "https://your-cluster-url.qdrant.tech", "QDRANT_API_KEY": "your-qdrant-api-key", "EMBEDDING_PROVIDER": "openai", "OPENAI_API_KEY": "your-openai-api-key" } } ``` ### Environment Variables #### Qdrant Configuration - `QDRANT_URL` (required): URL of your Qdrant instance - For local: http://localhost:6333 - For cloud: https://your-cluster-url.qdrant.tech - `QDRANT_API_KEY` (required for cloud): Your Qdrant Cloud API key #### Embeddings Configuration - `EMBEDDING_PROVIDER` (optional): Choose between 'ollama' (default) or 'openai' - `EMBEDDING_MODEL` (optional): - For Ollama: defaults to 'nomic-embed-text' - For OpenAI: defaults to 'text-embedding-3-small' - `OLLAMA_URL` (optional): URL of your Ollama instance (defaults to http://localhost:11434) - `OPENAI_API_KEY` (required if using OpenAI): Your OpenAI API key ## Available Tools 1. `add_documentation` - Add documentation from a URL to the RAG database - Parameters: - `url`: URL of the documentation to fetch 2. `search_documentation` - Search through stored documentation - Parameters: - `query`: Search query - `limit` (optional): Maximum number of results to return (default: 5) 3. `list_sources` - List all documentation sources currently stored - No parameters required ## Example Usage In Claude Desktop or any other MCP-compatible client: 1. Add documentation: ``` Add this documentation: https://docs.example.com/api ``` 2. Search documentation: ``` Search the documentation for information about authentication ``` 3. List sources: ``` What documentation sources are available? ``` ## Development 1. Clone the repository: ```bash git clone https://github.com/qpd-v/mcp-server-ragdocs.git cd mcp-server-ragdocs ``` 2. Install dependencies: ```bash npm install ``` 3. Build the project: ```bash npm run build ``` 4. Run locally: ```bash npm start ``` ## License MIT ## Contributing Contributions are welcome! Please feel free to submit a Pull Request.