UNPKG

@pulumi/databricks

Version:

A Pulumi package for creating and managing databricks cloud resources.

136 lines 5.95 kB
"use strict"; // *** WARNING: this file was generated by pulumi-language-nodejs. *** // *** Do not edit by hand unless you're certain you know what you are doing! *** Object.defineProperty(exports, "__esModule", { value: true }); exports.ModelServingProvisionedThroughput = void 0; const pulumi = require("@pulumi/pulumi"); const utilities = require("./utilities"); /** * This resource allows you to manage [Foundation Model provisioned throughput](https://docs.databricks.com/aws/en/machine-learning/foundation-model-apis/deploy-prov-throughput-foundation-model-apis) endpoints in Databricks. * * > This resource is currently in private preview, and only available for enrolled customers. * * > This resource can only be used with a workspace-level provider! * * ## Example Usage * * Creating a Foundation Model provisioned throughput endpoint * * ```typescript * import * as pulumi from "@pulumi/pulumi"; * import * as databricks from "@pulumi/databricks"; * * const llama = new databricks.ModelServingProvisionedThroughput("llama", { * aiGateway: { * usageTrackingConfig: { * enabled: true, * }, * }, * config: { * servedEntities: [{ * entityName: "system.ai.llama-4-maverick", * entityVersion: "1", * provisionedModelUnits: 100, * }], * }, * }); * ``` * * ## Access Control * * * databricks.Permissions can control which groups or individual users can *Manage*, *Query* or *View* individual serving endpoints. * * ## Related Resources * * The following resources are often used in the same context: * * * databricks.ModelServing to create custom and external serving endpoints in Databricks. * * databricks.RegisteredModel to create [Models in Unity Catalog](https://docs.databricks.com/en/mlflow/models-in-uc.html) in Databricks. * * End to end workspace management guide. * * databricks.Directory to manage directories in [Databricks Workspace](https://docs.databricks.com/workspace/workspace-objects.html). * * databricks.MlflowModel to create models in the [workspace model registry](https://docs.databricks.com/en/mlflow/model-registry.html) in Databricks. * * databricks.Notebook to manage [Databricks Notebooks](https://docs.databricks.com/notebooks/index.html). * * databricks.Notebook data to export a notebook from Databricks Workspace. * * databricks.Repo to manage [Databricks Repos](https://docs.databricks.com/repos.html). * * ## Import * * The model serving provisioned throughput resource can be imported using the name of the endpoint: * * hcl * * import { * * to = databricks_model_serving_provisioned_throughput.this * * id = "<model-serving-endpoint-name>" * * } * * ```sh * $ pulumi import databricks:index/modelServingProvisionedThroughput:ModelServingProvisionedThroughput Alternatively, when using Pulumi version 1.4 or earlier, import using the command: * ``` * * bash * * ```sh * $ pulumi import databricks:index/modelServingProvisionedThroughput:ModelServingProvisionedThroughput this <model-serving-endpoint-name> * ``` */ class ModelServingProvisionedThroughput extends pulumi.CustomResource { /** * Get an existing ModelServingProvisionedThroughput resource's state with the given name, ID, and optional extra * properties used to qualify the lookup. * * @param name The _unique_ name of the resulting resource. * @param id The _unique_ provider ID of the resource to lookup. * @param state Any extra arguments used during the lookup. * @param opts Optional settings to control the behavior of the CustomResource. */ static get(name, id, state, opts) { return new ModelServingProvisionedThroughput(name, state, { ...opts, id: id }); } /** * Returns true if the given object is an instance of ModelServingProvisionedThroughput. This is designed to work even * when multiple copies of the Pulumi SDK have been loaded into the same process. */ static isInstance(obj) { if (obj === undefined || obj === null) { return false; } return obj['__pulumiType'] === ModelServingProvisionedThroughput.__pulumiType; } constructor(name, argsOrState, opts) { let resourceInputs = {}; opts = opts || {}; if (opts.id) { const state = argsOrState; resourceInputs["aiGateway"] = state?.aiGateway; resourceInputs["budgetPolicyId"] = state?.budgetPolicyId; resourceInputs["config"] = state?.config; resourceInputs["emailNotifications"] = state?.emailNotifications; resourceInputs["name"] = state?.name; resourceInputs["servingEndpointId"] = state?.servingEndpointId; resourceInputs["tags"] = state?.tags; } else { const args = argsOrState; if (args?.config === undefined && !opts.urn) { throw new Error("Missing required property 'config'"); } resourceInputs["aiGateway"] = args?.aiGateway; resourceInputs["budgetPolicyId"] = args?.budgetPolicyId; resourceInputs["config"] = args?.config; resourceInputs["emailNotifications"] = args?.emailNotifications; resourceInputs["name"] = args?.name; resourceInputs["tags"] = args?.tags; resourceInputs["servingEndpointId"] = undefined /*out*/; } opts = pulumi.mergeOptions(utilities.resourceOptsDefaults(), opts); super(ModelServingProvisionedThroughput.__pulumiType, name, resourceInputs, opts); } } exports.ModelServingProvisionedThroughput = ModelServingProvisionedThroughput; /** @internal */ ModelServingProvisionedThroughput.__pulumiType = 'databricks:index/modelServingProvisionedThroughput:ModelServingProvisionedThroughput'; //# sourceMappingURL=modelServingProvisionedThroughput.js.map