UNPKG

@pulumi/databricks

Version:

A Pulumi package for creating and managing databricks cloud resources.

135 lines 5.99 kB
"use strict"; // *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** // *** Do not edit by hand unless you're certain you know what you are doing! *** Object.defineProperty(exports, "__esModule", { value: true }); exports.ModelServing = void 0; const pulumi = require("@pulumi/pulumi"); const utilities = require("./utilities"); /** * This resource allows you to manage [Model Serving](https://docs.databricks.com/machine-learning/model-serving/index.html) endpoints in Databricks. * * > If you replace `servedModels` with `servedEntities` in an existing serving endpoint, the serving endpoint will briefly go into an update state (~30 seconds) and increment the config version. * * ## Example Usage * * ```typescript * import * as pulumi from "@pulumi/pulumi"; * import * as databricks from "@pulumi/databricks"; * * const _this = new databricks.ModelServing("this", { * name: "ads-serving-endpoint", * config: { * servedEntities: [ * { * name: "prod_model", * entityName: "ads-model", * entityVersion: "2", * workloadSize: "Small", * scaleToZeroEnabled: true, * }, * { * name: "candidate_model", * entityName: "ads-model", * entityVersion: "4", * workloadSize: "Small", * scaleToZeroEnabled: false, * }, * ], * trafficConfig: { * routes: [ * { * servedModelName: "prod_model", * trafficPercentage: 90, * }, * { * servedModelName: "candidate_model", * trafficPercentage: 10, * }, * ], * }, * }, * }); * ``` * * ## Access Control * * * databricks.Permissions can control which groups or individual users can *Manage*, *Query* or *View* individual serving endpoints. * * ## Related Resources * * The following resources are often used in the same context: * * * databricks.RegisteredModel to create [Models in Unity Catalog](https://docs.databricks.com/en/mlflow/models-in-uc.html) in Databricks. * * End to end workspace management guide. * * databricks.Directory to manage directories in [Databricks Workspace](https://docs.databricks.com/workspace/workspace-objects.html). * * databricks.MlflowModel to create models in the [workspace model registry](https://docs.databricks.com/en/mlflow/model-registry.html) in Databricks. * * databricks.Notebook to manage [Databricks Notebooks](https://docs.databricks.com/notebooks/index.html). * * databricks.Notebook data to export a notebook from Databricks Workspace. * * databricks.Repo to manage [Databricks Repos](https://docs.databricks.com/repos.html). * * ## Import * * The model serving resource can be imported using the name of the endpoint. * * bash * * ```sh * $ pulumi import databricks:index/modelServing:ModelServing this <model-serving-endpoint-name> * ``` */ class ModelServing extends pulumi.CustomResource { /** * Get an existing ModelServing resource's state with the given name, ID, and optional extra * properties used to qualify the lookup. * * @param name The _unique_ name of the resulting resource. * @param id The _unique_ provider ID of the resource to lookup. * @param state Any extra arguments used during the lookup. * @param opts Optional settings to control the behavior of the CustomResource. */ static get(name, id, state, opts) { return new ModelServing(name, state, Object.assign(Object.assign({}, opts), { id: id })); } /** * Returns true if the given object is an instance of ModelServing. This is designed to work even * when multiple copies of the Pulumi SDK have been loaded into the same process. */ static isInstance(obj) { if (obj === undefined || obj === null) { return false; } return obj['__pulumiType'] === ModelServing.__pulumiType; } constructor(name, argsOrState, opts) { let resourceInputs = {}; opts = opts || {}; if (opts.id) { const state = argsOrState; resourceInputs["aiGateway"] = state ? state.aiGateway : undefined; resourceInputs["budgetPolicyId"] = state ? state.budgetPolicyId : undefined; resourceInputs["config"] = state ? state.config : undefined; resourceInputs["name"] = state ? state.name : undefined; resourceInputs["rateLimits"] = state ? state.rateLimits : undefined; resourceInputs["routeOptimized"] = state ? state.routeOptimized : undefined; resourceInputs["servingEndpointId"] = state ? state.servingEndpointId : undefined; resourceInputs["tags"] = state ? state.tags : undefined; } else { const args = argsOrState; resourceInputs["aiGateway"] = args ? args.aiGateway : undefined; resourceInputs["budgetPolicyId"] = args ? args.budgetPolicyId : undefined; resourceInputs["config"] = args ? args.config : undefined; resourceInputs["name"] = args ? args.name : undefined; resourceInputs["rateLimits"] = args ? args.rateLimits : undefined; resourceInputs["routeOptimized"] = args ? args.routeOptimized : undefined; resourceInputs["tags"] = args ? args.tags : undefined; resourceInputs["servingEndpointId"] = undefined /*out*/; } opts = pulumi.mergeOptions(utilities.resourceOptsDefaults(), opts); super(ModelServing.__pulumiType, name, resourceInputs, opts); } } exports.ModelServing = ModelServing; /** @internal */ ModelServing.__pulumiType = 'databricks:index/modelServing:ModelServing'; //# sourceMappingURL=modelServing.js.map