UNPKG

@pulumi/databricks

Version:

A Pulumi package for creating and managing databricks cloud resources.

343 lines (342 loc) 14.9 kB
import * as pulumi from "@pulumi/pulumi"; import * as inputs from "./types/input"; import * as outputs from "./types/output"; /** * NOTE: This resource has been deprecated and will be removed soon. Please use the databricks.QualityMonitor resource instead. * * This resource allows you to manage [Lakehouse Monitors](https://docs.databricks.com/en/lakehouse-monitoring/index.html) in Databricks. * * A `databricks.LakehouseMonitor` is attached to a databricks.SqlTable and can be of type timeseries, snapshot or inference. * * ## Example Usage * * ```typescript * import * as pulumi from "@pulumi/pulumi"; * import * as databricks from "@pulumi/databricks"; * * const sandbox = new databricks.Catalog("sandbox", { * name: "sandbox", * comment: "this catalog is managed by terraform", * properties: { * purpose: "testing", * }, * }); * const things = new databricks.Schema("things", { * catalogName: sandbox.id, * name: "things", * comment: "this database is managed by terraform", * properties: { * kind: "various", * }, * }); * const myTestTable = new databricks.SqlTable("myTestTable", { * catalogName: "main", * schemaName: things.name, * name: "bar", * tableType: "MANAGED", * dataSourceFormat: "DELTA", * columns: [{ * name: "timestamp", * type: "int", * }], * }); * const testTimeseriesMonitor = new databricks.LakehouseMonitor("testTimeseriesMonitor", { * tableName: pulumi.interpolate`${sandbox.name}.${things.name}.${myTestTable.name}`, * assetsDir: pulumi.interpolate`/Shared/provider-test/databricks_lakehouse_monitoring/${myTestTable.name}`, * outputSchemaName: pulumi.interpolate`${sandbox.name}.${things.name}`, * timeSeries: { * granularities: ["1 hour"], * timestampCol: "timestamp", * }, * }); * ``` * * ### Inference Monitor * * ```typescript * import * as pulumi from "@pulumi/pulumi"; * import * as databricks from "@pulumi/databricks"; * * const testMonitorInference = new databricks.LakehouseMonitor("testMonitorInference", { * tableName: `${sandbox.name}.${things.name}.${myTestTable.name}`, * assetsDir: `/Shared/provider-test/databricks_lakehouse_monitoring/${myTestTable.name}`, * outputSchemaName: `${sandbox.name}.${things.name}`, * inferenceLog: { * granularities: ["1 hour"], * timestampCol: "timestamp", * predictionCol: "prediction", * modelIdCol: "model_id", * problemType: "PROBLEM_TYPE_REGRESSION", * }, * }); * ``` * ### Snapshot Monitor * ```typescript * import * as pulumi from "@pulumi/pulumi"; * import * as databricks from "@pulumi/databricks"; * * const testMonitorInference = new databricks.LakehouseMonitor("testMonitorInference", { * tableName: `${sandbox.name}.${things.name}.${myTestTable.name}`, * assetsDir: `/Shared/provider-test/databricks_lakehouse_monitoring/${myTestTable.name}`, * outputSchemaName: `${sandbox.name}.${things.name}`, * snapshot: {}, * }); * ``` * * ## Related Resources * * The following resources are often used in the same context: * * * databricks.Catalog * * databricks.Schema * * databricks.SqlTable */ export declare class LakehouseMonitor extends pulumi.CustomResource { /** * Get an existing LakehouseMonitor resource's state with the given name, ID, and optional extra * properties used to qualify the lookup. * * @param name The _unique_ name of the resulting resource. * @param id The _unique_ provider ID of the resource to lookup. * @param state Any extra arguments used during the lookup. * @param opts Optional settings to control the behavior of the CustomResource. */ static get(name: string, id: pulumi.Input<pulumi.ID>, state?: LakehouseMonitorState, opts?: pulumi.CustomResourceOptions): LakehouseMonitor; /** * Returns true if the given object is an instance of LakehouseMonitor. This is designed to work even * when multiple copies of the Pulumi SDK have been loaded into the same process. */ static isInstance(obj: any): obj is LakehouseMonitor; /** * The directory to store the monitoring assets (Eg. Dashboard and Metric Tables) */ readonly assetsDir: pulumi.Output<string>; /** * Name of the baseline table from which drift metrics are computed from.Columns in the monitored table should also be present in the baseline * table. */ readonly baselineTableName: pulumi.Output<string | undefined>; /** * Custom metrics to compute on the monitored table. These can be aggregate metrics, derived metrics (from already computed aggregate metrics), or drift metrics (comparing metrics across time windows). */ readonly customMetrics: pulumi.Output<outputs.LakehouseMonitorCustomMetric[] | undefined>; /** * The ID of the generated dashboard. */ readonly dashboardId: pulumi.Output<string>; /** * The data classification config for the monitor */ readonly dataClassificationConfig: pulumi.Output<outputs.LakehouseMonitorDataClassificationConfig | undefined>; /** * The full name of the drift metrics table. Format: __catalog_name__.__schema_name__.__table_name__. */ readonly driftMetricsTableName: pulumi.Output<string>; /** * Configuration for the inference log monitor */ readonly inferenceLog: pulumi.Output<outputs.LakehouseMonitorInferenceLog | undefined>; readonly latestMonitorFailureMsg: pulumi.Output<string | undefined>; /** * The version of the monitor config (e.g. 1,2,3). If negative, the monitor may be corrupted */ readonly monitorVersion: pulumi.Output<string>; /** * The notification settings for the monitor. The following optional blocks are supported, each consisting of the single string array field with name `emailAddresses` containing a list of emails to notify: */ readonly notifications: pulumi.Output<outputs.LakehouseMonitorNotifications | undefined>; /** * Schema where output metric tables are created */ readonly outputSchemaName: pulumi.Output<string>; /** * The full name of the profile metrics table. Format: __catalog_name__.__schema_name__.__table_name__. */ readonly profileMetricsTableName: pulumi.Output<string>; /** * The schedule for automatically updating and refreshing metric tables. This block consists of following fields: */ readonly schedule: pulumi.Output<outputs.LakehouseMonitorSchedule | undefined>; /** * Whether to skip creating a default dashboard summarizing data quality metrics. */ readonly skipBuiltinDashboard: pulumi.Output<boolean | undefined>; /** * List of column expressions to slice data with for targeted analysis. The data is grouped by each expression independently, resulting in a separate slice for each predicate and its complements. For high-cardinality columns, only the top 100 unique values by frequency will generate slices. */ readonly slicingExprs: pulumi.Output<string[] | undefined>; /** * Configuration for monitoring snapshot tables. */ readonly snapshot: pulumi.Output<outputs.LakehouseMonitorSnapshot | undefined>; /** * Status of the Monitor */ readonly status: pulumi.Output<string>; /** * The full name of the table to attach the monitor too. Its of the format {catalog}.{schema}.{tableName} */ readonly tableName: pulumi.Output<string>; /** * Configuration for monitoring timeseries tables. */ readonly timeSeries: pulumi.Output<outputs.LakehouseMonitorTimeSeries | undefined>; /** * Optional argument to specify the warehouse for dashboard creation. If not specified, the first running warehouse will be used. */ readonly warehouseId: pulumi.Output<string | undefined>; /** * Create a LakehouseMonitor resource with the given unique name, arguments, and options. * * @param name The _unique_ name of the resource. * @param args The arguments to use to populate this resource's properties. * @param opts A bag of options that control this resource's behavior. */ constructor(name: string, args: LakehouseMonitorArgs, opts?: pulumi.CustomResourceOptions); } /** * Input properties used for looking up and filtering LakehouseMonitor resources. */ export interface LakehouseMonitorState { /** * The directory to store the monitoring assets (Eg. Dashboard and Metric Tables) */ assetsDir?: pulumi.Input<string>; /** * Name of the baseline table from which drift metrics are computed from.Columns in the monitored table should also be present in the baseline * table. */ baselineTableName?: pulumi.Input<string>; /** * Custom metrics to compute on the monitored table. These can be aggregate metrics, derived metrics (from already computed aggregate metrics), or drift metrics (comparing metrics across time windows). */ customMetrics?: pulumi.Input<pulumi.Input<inputs.LakehouseMonitorCustomMetric>[]>; /** * The ID of the generated dashboard. */ dashboardId?: pulumi.Input<string>; /** * The data classification config for the monitor */ dataClassificationConfig?: pulumi.Input<inputs.LakehouseMonitorDataClassificationConfig>; /** * The full name of the drift metrics table. Format: __catalog_name__.__schema_name__.__table_name__. */ driftMetricsTableName?: pulumi.Input<string>; /** * Configuration for the inference log monitor */ inferenceLog?: pulumi.Input<inputs.LakehouseMonitorInferenceLog>; latestMonitorFailureMsg?: pulumi.Input<string>; /** * The version of the monitor config (e.g. 1,2,3). If negative, the monitor may be corrupted */ monitorVersion?: pulumi.Input<string>; /** * The notification settings for the monitor. The following optional blocks are supported, each consisting of the single string array field with name `emailAddresses` containing a list of emails to notify: */ notifications?: pulumi.Input<inputs.LakehouseMonitorNotifications>; /** * Schema where output metric tables are created */ outputSchemaName?: pulumi.Input<string>; /** * The full name of the profile metrics table. Format: __catalog_name__.__schema_name__.__table_name__. */ profileMetricsTableName?: pulumi.Input<string>; /** * The schedule for automatically updating and refreshing metric tables. This block consists of following fields: */ schedule?: pulumi.Input<inputs.LakehouseMonitorSchedule>; /** * Whether to skip creating a default dashboard summarizing data quality metrics. */ skipBuiltinDashboard?: pulumi.Input<boolean>; /** * List of column expressions to slice data with for targeted analysis. The data is grouped by each expression independently, resulting in a separate slice for each predicate and its complements. For high-cardinality columns, only the top 100 unique values by frequency will generate slices. */ slicingExprs?: pulumi.Input<pulumi.Input<string>[]>; /** * Configuration for monitoring snapshot tables. */ snapshot?: pulumi.Input<inputs.LakehouseMonitorSnapshot>; /** * Status of the Monitor */ status?: pulumi.Input<string>; /** * The full name of the table to attach the monitor too. Its of the format {catalog}.{schema}.{tableName} */ tableName?: pulumi.Input<string>; /** * Configuration for monitoring timeseries tables. */ timeSeries?: pulumi.Input<inputs.LakehouseMonitorTimeSeries>; /** * Optional argument to specify the warehouse for dashboard creation. If not specified, the first running warehouse will be used. */ warehouseId?: pulumi.Input<string>; } /** * The set of arguments for constructing a LakehouseMonitor resource. */ export interface LakehouseMonitorArgs { /** * The directory to store the monitoring assets (Eg. Dashboard and Metric Tables) */ assetsDir: pulumi.Input<string>; /** * Name of the baseline table from which drift metrics are computed from.Columns in the monitored table should also be present in the baseline * table. */ baselineTableName?: pulumi.Input<string>; /** * Custom metrics to compute on the monitored table. These can be aggregate metrics, derived metrics (from already computed aggregate metrics), or drift metrics (comparing metrics across time windows). */ customMetrics?: pulumi.Input<pulumi.Input<inputs.LakehouseMonitorCustomMetric>[]>; /** * The data classification config for the monitor */ dataClassificationConfig?: pulumi.Input<inputs.LakehouseMonitorDataClassificationConfig>; /** * Configuration for the inference log monitor */ inferenceLog?: pulumi.Input<inputs.LakehouseMonitorInferenceLog>; latestMonitorFailureMsg?: pulumi.Input<string>; /** * The notification settings for the monitor. The following optional blocks are supported, each consisting of the single string array field with name `emailAddresses` containing a list of emails to notify: */ notifications?: pulumi.Input<inputs.LakehouseMonitorNotifications>; /** * Schema where output metric tables are created */ outputSchemaName: pulumi.Input<string>; /** * The schedule for automatically updating and refreshing metric tables. This block consists of following fields: */ schedule?: pulumi.Input<inputs.LakehouseMonitorSchedule>; /** * Whether to skip creating a default dashboard summarizing data quality metrics. */ skipBuiltinDashboard?: pulumi.Input<boolean>; /** * List of column expressions to slice data with for targeted analysis. The data is grouped by each expression independently, resulting in a separate slice for each predicate and its complements. For high-cardinality columns, only the top 100 unique values by frequency will generate slices. */ slicingExprs?: pulumi.Input<pulumi.Input<string>[]>; /** * Configuration for monitoring snapshot tables. */ snapshot?: pulumi.Input<inputs.LakehouseMonitorSnapshot>; /** * The full name of the table to attach the monitor too. Its of the format {catalog}.{schema}.{tableName} */ tableName: pulumi.Input<string>; /** * Configuration for monitoring timeseries tables. */ timeSeries?: pulumi.Input<inputs.LakehouseMonitorTimeSeries>; /** * Optional argument to specify the warehouse for dashboard creation. If not specified, the first running warehouse will be used. */ warehouseId?: pulumi.Input<string>; }