UNPKG

@pulumi/databricks

Version:

A Pulumi package for creating and managing databricks cloud resources.

201 lines (200 loc) 6.27 kB
import * as pulumi from "@pulumi/pulumi"; import * as inputs from "./types/input"; import * as outputs from "./types/output"; /** * > **Note** If you have a fully automated setup with workspaces created by databricks.MwsWorkspaces or azurerm_databricks_workspace, please make sure to add dependsOn attribute in order to prevent _default auth: cannot configure default credentials_ errors. * * Retrieves the settings of databricks.MlflowModel by name. * * ## Example Usage * * ```typescript * import * as pulumi from "@pulumi/pulumi"; * import * as databricks from "@pulumi/databricks"; * * const thisMlflowModel = new databricks.MlflowModel("this", { * name: "My MLflow Model", * description: "My MLflow model description", * tags: [ * { * key: "key1", * value: "value1", * }, * { * key: "key2", * value: "value2", * }, * ], * }); * const _this = databricks.getMlflowModel({ * name: "My MLflow Model", * }); * export const model = _this; * ``` * * ```typescript * import * as pulumi from "@pulumi/pulumi"; * import * as databricks from "@pulumi/databricks"; * * const _this = databricks.getMlflowModel({ * name: "My MLflow Model with multiple versions", * }); * const thisModelServing = new databricks.ModelServing("this", { * name: "model-serving-endpoint", * config: { * servedModels: [{ * name: "model_serving_prod", * modelName: _this.then(_this => _this.name), * modelVersion: _this.then(_this => _this.latestVersions?.[0]?.version), * workloadSize: "Small", * scaleToZeroEnabled: true, * }], * }, * }); * ``` */ export declare function getMlflowModel(args: GetMlflowModelArgs, opts?: pulumi.InvokeOptions): Promise<GetMlflowModelResult>; /** * A collection of arguments for invoking getMlflowModel. */ export interface GetMlflowModelArgs { /** * User-specified description for the object. */ description?: string; /** * Array of model versions, each the latest version for its stage. */ latestVersions?: inputs.GetMlflowModelLatestVersion[]; /** * Name of the registered model. */ name: string; /** * Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions. */ permissionLevel?: string; /** * Array of tags associated with the model. */ tags?: inputs.GetMlflowModelTag[]; /** * The username of the user that created the object. */ userId?: string; } /** * A collection of values returned by getMlflowModel. */ export interface GetMlflowModelResult { /** * User-specified description for the object. */ readonly description: string; /** * Unique identifier for the object. */ readonly id: string; /** * Array of model versions, each the latest version for its stage. */ readonly latestVersions: outputs.GetMlflowModelLatestVersion[]; /** * Name of the model. */ readonly name: string; /** * Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions. */ readonly permissionLevel: string; /** * Array of tags associated with the model. */ readonly tags: outputs.GetMlflowModelTag[]; /** * The username of the user that created the object. */ readonly userId: string; } /** * > **Note** If you have a fully automated setup with workspaces created by databricks.MwsWorkspaces or azurerm_databricks_workspace, please make sure to add dependsOn attribute in order to prevent _default auth: cannot configure default credentials_ errors. * * Retrieves the settings of databricks.MlflowModel by name. * * ## Example Usage * * ```typescript * import * as pulumi from "@pulumi/pulumi"; * import * as databricks from "@pulumi/databricks"; * * const thisMlflowModel = new databricks.MlflowModel("this", { * name: "My MLflow Model", * description: "My MLflow model description", * tags: [ * { * key: "key1", * value: "value1", * }, * { * key: "key2", * value: "value2", * }, * ], * }); * const _this = databricks.getMlflowModel({ * name: "My MLflow Model", * }); * export const model = _this; * ``` * * ```typescript * import * as pulumi from "@pulumi/pulumi"; * import * as databricks from "@pulumi/databricks"; * * const _this = databricks.getMlflowModel({ * name: "My MLflow Model with multiple versions", * }); * const thisModelServing = new databricks.ModelServing("this", { * name: "model-serving-endpoint", * config: { * servedModels: [{ * name: "model_serving_prod", * modelName: _this.then(_this => _this.name), * modelVersion: _this.then(_this => _this.latestVersions?.[0]?.version), * workloadSize: "Small", * scaleToZeroEnabled: true, * }], * }, * }); * ``` */ export declare function getMlflowModelOutput(args: GetMlflowModelOutputArgs, opts?: pulumi.InvokeOutputOptions): pulumi.Output<GetMlflowModelResult>; /** * A collection of arguments for invoking getMlflowModel. */ export interface GetMlflowModelOutputArgs { /** * User-specified description for the object. */ description?: pulumi.Input<string>; /** * Array of model versions, each the latest version for its stage. */ latestVersions?: pulumi.Input<pulumi.Input<inputs.GetMlflowModelLatestVersionArgs>[]>; /** * Name of the registered model. */ name: pulumi.Input<string>; /** * Permission level of the requesting user on the object. For what is allowed at each level, see MLflow Model permissions. */ permissionLevel?: pulumi.Input<string>; /** * Array of tags associated with the model. */ tags?: pulumi.Input<pulumi.Input<inputs.GetMlflowModelTagArgs>[]>; /** * The username of the user that created the object. */ userId?: pulumi.Input<string>; }