@pulumi/aws
Version:
A Pulumi package for creating and managing Amazon Web Services (AWS) cloud resources.
105 lines (104 loc) • 8.24 kB
TypeScript
import * as pulumi from "@pulumi/pulumi";
/**
* Get information about prebuilt Amazon SageMaker AI Docker images.
*
* > **NOTE:** The AWS provider creates a validly constructed `registryPath` but does not verify that the `registryPath` corresponds to an existing image. For example, using a `registryPath` containing an `imageTag` that does not correspond to a Docker image in the ECR repository, will result in an error.
*
* ## Example Usage
*
* Basic usage:
*
* ```typescript
* import * as pulumi from "@pulumi/pulumi";
* import * as aws from "@pulumi/aws";
*
* const test = aws.sagemaker.getPrebuiltEcrImage({
* repositoryName: "sagemaker-scikit-learn",
* imageTag: "2.2-1.0.11.0",
* });
* ```
*/
export declare function getPrebuiltEcrImage(args: GetPrebuiltEcrImageArgs, opts?: pulumi.InvokeOptions): Promise<GetPrebuiltEcrImageResult>;
/**
* A collection of arguments for invoking getPrebuiltEcrImage.
*/
export interface GetPrebuiltEcrImageArgs {
/**
* DNS suffix to use in the registry path. If not specified, the AWS provider sets it to the DNS suffix for the current region.
*/
dnsSuffix?: string;
/**
* Image tag for the Docker image. If not specified, the AWS provider sets the value to `1`, which for many repositories indicates the latest version. Some repositories, such as XGBoost, do not support `1` or `latest` and specific version must be used.
*/
imageTag?: string;
/**
* Region to use in the registry path. Defaults to the Region set in the provider configuration.
*/
region?: string;
/**
* Name of the repository, which is generally the algorithm or library. Values include `autogluon-inference`, `autogluon-training`, `blazingtext`, `djl-inference`, `factorization-machines`, `forecasting-deepar`, `huggingface-pytorch-inference`, `huggingface-pytorch-inference-neuron`, `huggingface-pytorch-inference-neuronx`, `huggingface-pytorch-tgi-inference`, `huggingface-pytorch-training`, `huggingface-pytorch-training-neuronx`, `huggingface-pytorch-trcomp-training`, `huggingface-tensorflow-inference`, `huggingface-tensorflow-training`, `huggingface-tensorflow-trcomp-training`, `image-classification`, `image-classification-neo`, `ipinsights`, `kmeans`, `knn`, `lda`, `linear-learner`, `mxnet-inference`, `mxnet-inference-eia`, `mxnet-training`, `ntm`, `object-detection`, `object2vec`, `pca`, `pytorch-inference`, `pytorch-inference-eia`, `pytorch-inference-graviton`, `pytorch-inference-neuronx`, `pytorch-training`, `pytorch-training-neuronx`, `pytorch-trcomp-training`, `randomcutforest`, `sagemaker-base-python`, `sagemaker-chainer`, `sagemaker-clarify-processing`, `sagemaker-data-wrangler-container`, `sagemaker-debugger-rules`, `sagemaker-geospatial-v1-0`, `sagemaker-inference-mxnet`, `sagemaker-inference-pytorch`, `sagemaker-inference-tensorflow`, `sagemaker-model-monitor-analyzer`, `sagemaker-mxnet`, `sagemaker-mxnet-eia`, `sagemaker-mxnet-serving`, `sagemaker-mxnet-serving-eia`, `sagemaker-neo-mxnet`, `sagemaker-neo-pytorch`, `sagemaker-neo-tensorflow`, `sagemaker-pytorch`, `sagemaker-rl-coach-container`, `sagemaker-rl-mxnet`, `sagemaker-rl-ray-container`, `sagemaker-rl-tensorflow`, `sagemaker-rl-vw-container`, `sagemaker-scikit-learn`, `sagemaker-spark-processing`, `sagemaker-sparkml-serving`, `sagemaker-tensorflow`, `sagemaker-tensorflow-eia`, `sagemaker-tensorflow-scriptmode`, `sagemaker-tensorflow-serving`, `sagemaker-tensorflow-serving-eia`, `sagemaker-tritonserver`, `sagemaker-xgboost`, `semantic-segmentation`, `seq2seq`, `stabilityai-pytorch-inference`, `tei`, `tei-cpu`, `tensorflow-inference`, `tensorflow-inference-eia`, `tensorflow-inference-graviton`, `tensorflow-training`, and `xgboost-neo`.
*/
repositoryName: string;
}
/**
* A collection of values returned by getPrebuiltEcrImage.
*/
export interface GetPrebuiltEcrImageResult {
readonly dnsSuffix?: string;
/**
* The provider-assigned unique ID for this managed resource.
*/
readonly id: string;
readonly imageTag?: string;
readonly region: string;
/**
* Account ID containing the image. For example, `469771592824`.
*/
readonly registryId: string;
/**
* Docker image URL. For example, `341280168497.dkr.ecr.ca-central-1.amazonaws.com/sagemaker-sparkml-serving:2.4`.
*/
readonly registryPath: string;
readonly repositoryName: string;
}
/**
* Get information about prebuilt Amazon SageMaker AI Docker images.
*
* > **NOTE:** The AWS provider creates a validly constructed `registryPath` but does not verify that the `registryPath` corresponds to an existing image. For example, using a `registryPath` containing an `imageTag` that does not correspond to a Docker image in the ECR repository, will result in an error.
*
* ## Example Usage
*
* Basic usage:
*
* ```typescript
* import * as pulumi from "@pulumi/pulumi";
* import * as aws from "@pulumi/aws";
*
* const test = aws.sagemaker.getPrebuiltEcrImage({
* repositoryName: "sagemaker-scikit-learn",
* imageTag: "2.2-1.0.11.0",
* });
* ```
*/
export declare function getPrebuiltEcrImageOutput(args: GetPrebuiltEcrImageOutputArgs, opts?: pulumi.InvokeOutputOptions): pulumi.Output<GetPrebuiltEcrImageResult>;
/**
* A collection of arguments for invoking getPrebuiltEcrImage.
*/
export interface GetPrebuiltEcrImageOutputArgs {
/**
* DNS suffix to use in the registry path. If not specified, the AWS provider sets it to the DNS suffix for the current region.
*/
dnsSuffix?: pulumi.Input<string>;
/**
* Image tag for the Docker image. If not specified, the AWS provider sets the value to `1`, which for many repositories indicates the latest version. Some repositories, such as XGBoost, do not support `1` or `latest` and specific version must be used.
*/
imageTag?: pulumi.Input<string>;
/**
* Region to use in the registry path. Defaults to the Region set in the provider configuration.
*/
region?: pulumi.Input<string>;
/**
* Name of the repository, which is generally the algorithm or library. Values include `autogluon-inference`, `autogluon-training`, `blazingtext`, `djl-inference`, `factorization-machines`, `forecasting-deepar`, `huggingface-pytorch-inference`, `huggingface-pytorch-inference-neuron`, `huggingface-pytorch-inference-neuronx`, `huggingface-pytorch-tgi-inference`, `huggingface-pytorch-training`, `huggingface-pytorch-training-neuronx`, `huggingface-pytorch-trcomp-training`, `huggingface-tensorflow-inference`, `huggingface-tensorflow-training`, `huggingface-tensorflow-trcomp-training`, `image-classification`, `image-classification-neo`, `ipinsights`, `kmeans`, `knn`, `lda`, `linear-learner`, `mxnet-inference`, `mxnet-inference-eia`, `mxnet-training`, `ntm`, `object-detection`, `object2vec`, `pca`, `pytorch-inference`, `pytorch-inference-eia`, `pytorch-inference-graviton`, `pytorch-inference-neuronx`, `pytorch-training`, `pytorch-training-neuronx`, `pytorch-trcomp-training`, `randomcutforest`, `sagemaker-base-python`, `sagemaker-chainer`, `sagemaker-clarify-processing`, `sagemaker-data-wrangler-container`, `sagemaker-debugger-rules`, `sagemaker-geospatial-v1-0`, `sagemaker-inference-mxnet`, `sagemaker-inference-pytorch`, `sagemaker-inference-tensorflow`, `sagemaker-model-monitor-analyzer`, `sagemaker-mxnet`, `sagemaker-mxnet-eia`, `sagemaker-mxnet-serving`, `sagemaker-mxnet-serving-eia`, `sagemaker-neo-mxnet`, `sagemaker-neo-pytorch`, `sagemaker-neo-tensorflow`, `sagemaker-pytorch`, `sagemaker-rl-coach-container`, `sagemaker-rl-mxnet`, `sagemaker-rl-ray-container`, `sagemaker-rl-tensorflow`, `sagemaker-rl-vw-container`, `sagemaker-scikit-learn`, `sagemaker-spark-processing`, `sagemaker-sparkml-serving`, `sagemaker-tensorflow`, `sagemaker-tensorflow-eia`, `sagemaker-tensorflow-scriptmode`, `sagemaker-tensorflow-serving`, `sagemaker-tensorflow-serving-eia`, `sagemaker-tritonserver`, `sagemaker-xgboost`, `semantic-segmentation`, `seq2seq`, `stabilityai-pytorch-inference`, `tei`, `tei-cpu`, `tensorflow-inference`, `tensorflow-inference-eia`, `tensorflow-inference-graviton`, `tensorflow-training`, and `xgboost-neo`.
*/
repositoryName: pulumi.Input<string>;
}