@protontech/openpgp
Version:
OpenPGP.js is a Javascript implementation of the OpenPGP protocol. This is defined in RFC 4880.
437 lines (431 loc) • 19 kB
JavaScript
/*! OpenPGP.js v6.1.1-patch.4 - 2025-07-14 - this is LGPL licensed code, see LICENSE/our website https://openpgpjs.org/ for more information. */
const globalThis = typeof window !== 'undefined' ? window : typeof global !== 'undefined' ? global : typeof self !== 'undefined' ? self : {};
import { H as Hash, h as createView, b as aexists, t as toBytes, i as aoutput, w as wrapConstructor, j as rotr, k as u64 } from './sha3.mjs';
/**
* Polyfill for Safari 14
*/
function setBigUint64(view, byteOffset, value, isLE) {
if (typeof view.setBigUint64 === 'function')
return view.setBigUint64(byteOffset, value, isLE);
const _32n = BigInt(32);
const _u32_max = BigInt(0xffffffff);
const wh = Number((value >> _32n) & _u32_max);
const wl = Number(value & _u32_max);
const h = isLE ? 4 : 0;
const l = isLE ? 0 : 4;
view.setUint32(byteOffset + h, wh, isLE);
view.setUint32(byteOffset + l, wl, isLE);
}
/**
* Choice: a ? b : c
*/
const Chi = (a, b, c) => (a & b) ^ (~a & c);
/**
* Majority function, true if any two inputs is true
*/
const Maj = (a, b, c) => (a & b) ^ (a & c) ^ (b & c);
/**
* Merkle-Damgard hash construction base class.
* Could be used to create MD5, RIPEMD, SHA1, SHA2.
*/
class HashMD extends Hash {
constructor(blockLen, outputLen, padOffset, isLE) {
super();
this.blockLen = blockLen;
this.outputLen = outputLen;
this.padOffset = padOffset;
this.isLE = isLE;
this.finished = false;
this.length = 0;
this.pos = 0;
this.destroyed = false;
this.buffer = new Uint8Array(blockLen);
this.view = createView(this.buffer);
}
update(data) {
aexists(this);
const { view, buffer, blockLen } = this;
data = toBytes(data);
const len = data.length;
for (let pos = 0; pos < len;) {
const take = Math.min(blockLen - this.pos, len - pos);
// Fast path: we have at least one block in input, cast it to view and process
if (take === blockLen) {
const dataView = createView(data);
for (; blockLen <= len - pos; pos += blockLen)
this.process(dataView, pos);
continue;
}
buffer.set(data.subarray(pos, pos + take), this.pos);
this.pos += take;
pos += take;
if (this.pos === blockLen) {
this.process(view, 0);
this.pos = 0;
}
}
this.length += data.length;
this.roundClean();
return this;
}
digestInto(out) {
aexists(this);
aoutput(out, this);
this.finished = true;
// Padding
// We can avoid allocation of buffer for padding completely if it
// was previously not allocated here. But it won't change performance.
const { buffer, view, blockLen, isLE } = this;
let { pos } = this;
// append the bit '1' to the message
buffer[pos++] = 0b10000000;
this.buffer.subarray(pos).fill(0);
// we have less than padOffset left in buffer, so we cannot put length in
// current block, need process it and pad again
if (this.padOffset > blockLen - pos) {
this.process(view, 0);
pos = 0;
}
// Pad until full block byte with zeros
for (let i = pos; i < blockLen; i++)
buffer[i] = 0;
// Note: sha512 requires length to be 128bit integer, but length in JS will overflow before that
// You need to write around 2 exabytes (u64_max / 8 / (1024**6)) for this to happen.
// So we just write lowest 64 bits of that value.
setBigUint64(view, blockLen - 8, BigInt(this.length * 8), isLE);
this.process(view, 0);
const oview = createView(out);
const len = this.outputLen;
// NOTE: we do division by 4 later, which should be fused in single op with modulo by JIT
if (len % 4)
throw new Error('_sha2: outputLen should be aligned to 32bit');
const outLen = len / 4;
const state = this.get();
if (outLen > state.length)
throw new Error('_sha2: outputLen bigger than state');
for (let i = 0; i < outLen; i++)
oview.setUint32(4 * i, state[i], isLE);
}
digest() {
const { buffer, outputLen } = this;
this.digestInto(buffer);
const res = buffer.slice(0, outputLen);
this.destroy();
return res;
}
_cloneInto(to) {
to || (to = new this.constructor());
to.set(...this.get());
const { blockLen, buffer, length, finished, destroyed, pos } = this;
to.length = length;
to.pos = pos;
to.finished = finished;
to.destroyed = destroyed;
if (length % blockLen)
to.buffer.set(buffer);
return to;
}
}
// SHA2-256 need to try 2^128 hashes to execute birthday attack.
// BTC network is doing 2^70 hashes/sec (2^95 hashes/year) as per late 2024.
// Round constants:
// first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311)
// prettier-ignore
const SHA256_K = /* @__PURE__ */ new Uint32Array([
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
]);
// Initial state:
// first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19
// prettier-ignore
const SHA256_IV = /* @__PURE__ */ new Uint32Array([
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
]);
// Temporary buffer, not used to store anything between runs
// Named this way because it matches specification.
const SHA256_W = /* @__PURE__ */ new Uint32Array(64);
class SHA256 extends HashMD {
constructor() {
super(64, 32, 8, false);
// We cannot use array here since array allows indexing by variable
// which means optimizer/compiler cannot use registers.
this.A = SHA256_IV[0] | 0;
this.B = SHA256_IV[1] | 0;
this.C = SHA256_IV[2] | 0;
this.D = SHA256_IV[3] | 0;
this.E = SHA256_IV[4] | 0;
this.F = SHA256_IV[5] | 0;
this.G = SHA256_IV[6] | 0;
this.H = SHA256_IV[7] | 0;
}
get() {
const { A, B, C, D, E, F, G, H } = this;
return [A, B, C, D, E, F, G, H];
}
// prettier-ignore
set(A, B, C, D, E, F, G, H) {
this.A = A | 0;
this.B = B | 0;
this.C = C | 0;
this.D = D | 0;
this.E = E | 0;
this.F = F | 0;
this.G = G | 0;
this.H = H | 0;
}
process(view, offset) {
// Extend the first 16 words into the remaining 48 words w[16..63] of the message schedule array
for (let i = 0; i < 16; i++, offset += 4)
SHA256_W[i] = view.getUint32(offset, false);
for (let i = 16; i < 64; i++) {
const W15 = SHA256_W[i - 15];
const W2 = SHA256_W[i - 2];
const s0 = rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >>> 3);
const s1 = rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >>> 10);
SHA256_W[i] = (s1 + SHA256_W[i - 7] + s0 + SHA256_W[i - 16]) | 0;
}
// Compression function main loop, 64 rounds
let { A, B, C, D, E, F, G, H } = this;
for (let i = 0; i < 64; i++) {
const sigma1 = rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25);
const T1 = (H + sigma1 + Chi(E, F, G) + SHA256_K[i] + SHA256_W[i]) | 0;
const sigma0 = rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22);
const T2 = (sigma0 + Maj(A, B, C)) | 0;
H = G;
G = F;
F = E;
E = (D + T1) | 0;
D = C;
C = B;
B = A;
A = (T1 + T2) | 0;
}
// Add the compressed chunk to the current hash value
A = (A + this.A) | 0;
B = (B + this.B) | 0;
C = (C + this.C) | 0;
D = (D + this.D) | 0;
E = (E + this.E) | 0;
F = (F + this.F) | 0;
G = (G + this.G) | 0;
H = (H + this.H) | 0;
this.set(A, B, C, D, E, F, G, H);
}
roundClean() {
SHA256_W.fill(0);
}
destroy() {
this.set(0, 0, 0, 0, 0, 0, 0, 0);
this.buffer.fill(0);
}
}
// Constants from https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
class SHA224 extends SHA256 {
constructor() {
super();
this.A = 0xc1059ed8 | 0;
this.B = 0x367cd507 | 0;
this.C = 0x3070dd17 | 0;
this.D = 0xf70e5939 | 0;
this.E = 0xffc00b31 | 0;
this.F = 0x68581511 | 0;
this.G = 0x64f98fa7 | 0;
this.H = 0xbefa4fa4 | 0;
this.outputLen = 28;
}
}
/**
* SHA2-256 hash function
* @param message - data that would be hashed
*/
const sha256 = /* @__PURE__ */ wrapConstructor(() => new SHA256());
/**
* SHA2-224 hash function
*/
const sha224 = /* @__PURE__ */ wrapConstructor(() => new SHA224());
// Round contants (first 32 bits of the fractional parts of the cube roots of the first 80 primes 2..409):
// prettier-ignore
const [SHA512_Kh, SHA512_Kl] = /* @__PURE__ */ (() => u64.split([
'0x428a2f98d728ae22', '0x7137449123ef65cd', '0xb5c0fbcfec4d3b2f', '0xe9b5dba58189dbbc',
'0x3956c25bf348b538', '0x59f111f1b605d019', '0x923f82a4af194f9b', '0xab1c5ed5da6d8118',
'0xd807aa98a3030242', '0x12835b0145706fbe', '0x243185be4ee4b28c', '0x550c7dc3d5ffb4e2',
'0x72be5d74f27b896f', '0x80deb1fe3b1696b1', '0x9bdc06a725c71235', '0xc19bf174cf692694',
'0xe49b69c19ef14ad2', '0xefbe4786384f25e3', '0x0fc19dc68b8cd5b5', '0x240ca1cc77ac9c65',
'0x2de92c6f592b0275', '0x4a7484aa6ea6e483', '0x5cb0a9dcbd41fbd4', '0x76f988da831153b5',
'0x983e5152ee66dfab', '0xa831c66d2db43210', '0xb00327c898fb213f', '0xbf597fc7beef0ee4',
'0xc6e00bf33da88fc2', '0xd5a79147930aa725', '0x06ca6351e003826f', '0x142929670a0e6e70',
'0x27b70a8546d22ffc', '0x2e1b21385c26c926', '0x4d2c6dfc5ac42aed', '0x53380d139d95b3df',
'0x650a73548baf63de', '0x766a0abb3c77b2a8', '0x81c2c92e47edaee6', '0x92722c851482353b',
'0xa2bfe8a14cf10364', '0xa81a664bbc423001', '0xc24b8b70d0f89791', '0xc76c51a30654be30',
'0xd192e819d6ef5218', '0xd69906245565a910', '0xf40e35855771202a', '0x106aa07032bbd1b8',
'0x19a4c116b8d2d0c8', '0x1e376c085141ab53', '0x2748774cdf8eeb99', '0x34b0bcb5e19b48a8',
'0x391c0cb3c5c95a63', '0x4ed8aa4ae3418acb', '0x5b9cca4f7763e373', '0x682e6ff3d6b2b8a3',
'0x748f82ee5defb2fc', '0x78a5636f43172f60', '0x84c87814a1f0ab72', '0x8cc702081a6439ec',
'0x90befffa23631e28', '0xa4506cebde82bde9', '0xbef9a3f7b2c67915', '0xc67178f2e372532b',
'0xca273eceea26619c', '0xd186b8c721c0c207', '0xeada7dd6cde0eb1e', '0xf57d4f7fee6ed178',
'0x06f067aa72176fba', '0x0a637dc5a2c898a6', '0x113f9804bef90dae', '0x1b710b35131c471b',
'0x28db77f523047d84', '0x32caab7b40c72493', '0x3c9ebe0a15c9bebc', '0x431d67c49c100d4c',
'0x4cc5d4becb3e42b6', '0x597f299cfc657e2a', '0x5fcb6fab3ad6faec', '0x6c44198c4a475817'
].map(n => BigInt(n))))();
// Temporary buffer, not used to store anything between runs
const SHA512_W_H = /* @__PURE__ */ new Uint32Array(80);
const SHA512_W_L = /* @__PURE__ */ new Uint32Array(80);
class SHA512 extends HashMD {
constructor() {
super(128, 64, 16, false);
// We cannot use array here since array allows indexing by variable which means optimizer/compiler cannot use registers.
// Also looks cleaner and easier to verify with spec.
// Initial state (first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19):
// h -- high 32 bits, l -- low 32 bits
this.Ah = 0x6a09e667 | 0;
this.Al = 0xf3bcc908 | 0;
this.Bh = 0xbb67ae85 | 0;
this.Bl = 0x84caa73b | 0;
this.Ch = 0x3c6ef372 | 0;
this.Cl = 0xfe94f82b | 0;
this.Dh = 0xa54ff53a | 0;
this.Dl = 0x5f1d36f1 | 0;
this.Eh = 0x510e527f | 0;
this.El = 0xade682d1 | 0;
this.Fh = 0x9b05688c | 0;
this.Fl = 0x2b3e6c1f | 0;
this.Gh = 0x1f83d9ab | 0;
this.Gl = 0xfb41bd6b | 0;
this.Hh = 0x5be0cd19 | 0;
this.Hl = 0x137e2179 | 0;
}
// prettier-ignore
get() {
const { Ah, Al, Bh, Bl, Ch, Cl, Dh, Dl, Eh, El, Fh, Fl, Gh, Gl, Hh, Hl } = this;
return [Ah, Al, Bh, Bl, Ch, Cl, Dh, Dl, Eh, El, Fh, Fl, Gh, Gl, Hh, Hl];
}
// prettier-ignore
set(Ah, Al, Bh, Bl, Ch, Cl, Dh, Dl, Eh, El, Fh, Fl, Gh, Gl, Hh, Hl) {
this.Ah = Ah | 0;
this.Al = Al | 0;
this.Bh = Bh | 0;
this.Bl = Bl | 0;
this.Ch = Ch | 0;
this.Cl = Cl | 0;
this.Dh = Dh | 0;
this.Dl = Dl | 0;
this.Eh = Eh | 0;
this.El = El | 0;
this.Fh = Fh | 0;
this.Fl = Fl | 0;
this.Gh = Gh | 0;
this.Gl = Gl | 0;
this.Hh = Hh | 0;
this.Hl = Hl | 0;
}
process(view, offset) {
// Extend the first 16 words into the remaining 64 words w[16..79] of the message schedule array
for (let i = 0; i < 16; i++, offset += 4) {
SHA512_W_H[i] = view.getUint32(offset);
SHA512_W_L[i] = view.getUint32((offset += 4));
}
for (let i = 16; i < 80; i++) {
// s0 := (w[i-15] rightrotate 1) xor (w[i-15] rightrotate 8) xor (w[i-15] rightshift 7)
const W15h = SHA512_W_H[i - 15] | 0;
const W15l = SHA512_W_L[i - 15] | 0;
const s0h = u64.rotrSH(W15h, W15l, 1) ^ u64.rotrSH(W15h, W15l, 8) ^ u64.shrSH(W15h, W15l, 7);
const s0l = u64.rotrSL(W15h, W15l, 1) ^ u64.rotrSL(W15h, W15l, 8) ^ u64.shrSL(W15h, W15l, 7);
// s1 := (w[i-2] rightrotate 19) xor (w[i-2] rightrotate 61) xor (w[i-2] rightshift 6)
const W2h = SHA512_W_H[i - 2] | 0;
const W2l = SHA512_W_L[i - 2] | 0;
const s1h = u64.rotrSH(W2h, W2l, 19) ^ u64.rotrBH(W2h, W2l, 61) ^ u64.shrSH(W2h, W2l, 6);
const s1l = u64.rotrSL(W2h, W2l, 19) ^ u64.rotrBL(W2h, W2l, 61) ^ u64.shrSL(W2h, W2l, 6);
// SHA256_W[i] = s0 + s1 + SHA256_W[i - 7] + SHA256_W[i - 16];
const SUMl = u64.add4L(s0l, s1l, SHA512_W_L[i - 7], SHA512_W_L[i - 16]);
const SUMh = u64.add4H(SUMl, s0h, s1h, SHA512_W_H[i - 7], SHA512_W_H[i - 16]);
SHA512_W_H[i] = SUMh | 0;
SHA512_W_L[i] = SUMl | 0;
}
let { Ah, Al, Bh, Bl, Ch, Cl, Dh, Dl, Eh, El, Fh, Fl, Gh, Gl, Hh, Hl } = this;
// Compression function main loop, 80 rounds
for (let i = 0; i < 80; i++) {
// S1 := (e rightrotate 14) xor (e rightrotate 18) xor (e rightrotate 41)
const sigma1h = u64.rotrSH(Eh, El, 14) ^ u64.rotrSH(Eh, El, 18) ^ u64.rotrBH(Eh, El, 41);
const sigma1l = u64.rotrSL(Eh, El, 14) ^ u64.rotrSL(Eh, El, 18) ^ u64.rotrBL(Eh, El, 41);
//const T1 = (H + sigma1 + Chi(E, F, G) + SHA256_K[i] + SHA256_W[i]) | 0;
const CHIh = (Eh & Fh) ^ (~Eh & Gh);
const CHIl = (El & Fl) ^ (~El & Gl);
// T1 = H + sigma1 + Chi(E, F, G) + SHA512_K[i] + SHA512_W[i]
// prettier-ignore
const T1ll = u64.add5L(Hl, sigma1l, CHIl, SHA512_Kl[i], SHA512_W_L[i]);
const T1h = u64.add5H(T1ll, Hh, sigma1h, CHIh, SHA512_Kh[i], SHA512_W_H[i]);
const T1l = T1ll | 0;
// S0 := (a rightrotate 28) xor (a rightrotate 34) xor (a rightrotate 39)
const sigma0h = u64.rotrSH(Ah, Al, 28) ^ u64.rotrBH(Ah, Al, 34) ^ u64.rotrBH(Ah, Al, 39);
const sigma0l = u64.rotrSL(Ah, Al, 28) ^ u64.rotrBL(Ah, Al, 34) ^ u64.rotrBL(Ah, Al, 39);
const MAJh = (Ah & Bh) ^ (Ah & Ch) ^ (Bh & Ch);
const MAJl = (Al & Bl) ^ (Al & Cl) ^ (Bl & Cl);
Hh = Gh | 0;
Hl = Gl | 0;
Gh = Fh | 0;
Gl = Fl | 0;
Fh = Eh | 0;
Fl = El | 0;
({ h: Eh, l: El } = u64.add(Dh | 0, Dl | 0, T1h | 0, T1l | 0));
Dh = Ch | 0;
Dl = Cl | 0;
Ch = Bh | 0;
Cl = Bl | 0;
Bh = Ah | 0;
Bl = Al | 0;
const All = u64.add3L(T1l, sigma0l, MAJl);
Ah = u64.add3H(All, T1h, sigma0h, MAJh);
Al = All | 0;
}
// Add the compressed chunk to the current hash value
({ h: Ah, l: Al } = u64.add(this.Ah | 0, this.Al | 0, Ah | 0, Al | 0));
({ h: Bh, l: Bl } = u64.add(this.Bh | 0, this.Bl | 0, Bh | 0, Bl | 0));
({ h: Ch, l: Cl } = u64.add(this.Ch | 0, this.Cl | 0, Ch | 0, Cl | 0));
({ h: Dh, l: Dl } = u64.add(this.Dh | 0, this.Dl | 0, Dh | 0, Dl | 0));
({ h: Eh, l: El } = u64.add(this.Eh | 0, this.El | 0, Eh | 0, El | 0));
({ h: Fh, l: Fl } = u64.add(this.Fh | 0, this.Fl | 0, Fh | 0, Fl | 0));
({ h: Gh, l: Gl } = u64.add(this.Gh | 0, this.Gl | 0, Gh | 0, Gl | 0));
({ h: Hh, l: Hl } = u64.add(this.Hh | 0, this.Hl | 0, Hh | 0, Hl | 0));
this.set(Ah, Al, Bh, Bl, Ch, Cl, Dh, Dl, Eh, El, Fh, Fl, Gh, Gl, Hh, Hl);
}
roundClean() {
SHA512_W_H.fill(0);
SHA512_W_L.fill(0);
}
destroy() {
this.buffer.fill(0);
this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
}
}
class SHA384 extends SHA512 {
constructor() {
super();
// h -- high 32 bits, l -- low 32 bits
this.Ah = 0xcbbb9d5d | 0;
this.Al = 0xc1059ed8 | 0;
this.Bh = 0x629a292a | 0;
this.Bl = 0x367cd507 | 0;
this.Ch = 0x9159015a | 0;
this.Cl = 0x3070dd17 | 0;
this.Dh = 0x152fecd8 | 0;
this.Dl = 0xf70e5939 | 0;
this.Eh = 0x67332667 | 0;
this.El = 0xffc00b31 | 0;
this.Fh = 0x8eb44a87 | 0;
this.Fl = 0x68581511 | 0;
this.Gh = 0xdb0c2e0d | 0;
this.Gl = 0x64f98fa7 | 0;
this.Hh = 0x47b5481d | 0;
this.Hl = 0xbefa4fa4 | 0;
this.outputLen = 48;
}
}
const sha512 = /* @__PURE__ */ wrapConstructor(() => new SHA512());
const sha384 = /* @__PURE__ */ wrapConstructor(() => new SHA384());
export { Chi as C, HashMD as H, Maj as M, sha384 as a, sha512 as b, sha224 as c, sha256 as s };