UNPKG

@protontech/openpgp

Version:

OpenPGP.js is a Javascript implementation of the OpenPGP protocol. This is defined in RFC 4880.

437 lines (431 loc) 19 kB
/*! OpenPGP.js v6.1.1-patch.4 - 2025-07-14 - this is LGPL licensed code, see LICENSE/our website https://openpgpjs.org/ for more information. */ const globalThis = typeof window !== 'undefined' ? window : typeof global !== 'undefined' ? global : typeof self !== 'undefined' ? self : {}; import { H as Hash, h as createView, b as aexists, t as toBytes, i as aoutput, w as wrapConstructor, j as rotr, k as u64 } from './sha3.mjs'; /** * Polyfill for Safari 14 */ function setBigUint64(view, byteOffset, value, isLE) { if (typeof view.setBigUint64 === 'function') return view.setBigUint64(byteOffset, value, isLE); const _32n = BigInt(32); const _u32_max = BigInt(0xffffffff); const wh = Number((value >> _32n) & _u32_max); const wl = Number(value & _u32_max); const h = isLE ? 4 : 0; const l = isLE ? 0 : 4; view.setUint32(byteOffset + h, wh, isLE); view.setUint32(byteOffset + l, wl, isLE); } /** * Choice: a ? b : c */ const Chi = (a, b, c) => (a & b) ^ (~a & c); /** * Majority function, true if any two inputs is true */ const Maj = (a, b, c) => (a & b) ^ (a & c) ^ (b & c); /** * Merkle-Damgard hash construction base class. * Could be used to create MD5, RIPEMD, SHA1, SHA2. */ class HashMD extends Hash { constructor(blockLen, outputLen, padOffset, isLE) { super(); this.blockLen = blockLen; this.outputLen = outputLen; this.padOffset = padOffset; this.isLE = isLE; this.finished = false; this.length = 0; this.pos = 0; this.destroyed = false; this.buffer = new Uint8Array(blockLen); this.view = createView(this.buffer); } update(data) { aexists(this); const { view, buffer, blockLen } = this; data = toBytes(data); const len = data.length; for (let pos = 0; pos < len;) { const take = Math.min(blockLen - this.pos, len - pos); // Fast path: we have at least one block in input, cast it to view and process if (take === blockLen) { const dataView = createView(data); for (; blockLen <= len - pos; pos += blockLen) this.process(dataView, pos); continue; } buffer.set(data.subarray(pos, pos + take), this.pos); this.pos += take; pos += take; if (this.pos === blockLen) { this.process(view, 0); this.pos = 0; } } this.length += data.length; this.roundClean(); return this; } digestInto(out) { aexists(this); aoutput(out, this); this.finished = true; // Padding // We can avoid allocation of buffer for padding completely if it // was previously not allocated here. But it won't change performance. const { buffer, view, blockLen, isLE } = this; let { pos } = this; // append the bit '1' to the message buffer[pos++] = 0b10000000; this.buffer.subarray(pos).fill(0); // we have less than padOffset left in buffer, so we cannot put length in // current block, need process it and pad again if (this.padOffset > blockLen - pos) { this.process(view, 0); pos = 0; } // Pad until full block byte with zeros for (let i = pos; i < blockLen; i++) buffer[i] = 0; // Note: sha512 requires length to be 128bit integer, but length in JS will overflow before that // You need to write around 2 exabytes (u64_max / 8 / (1024**6)) for this to happen. // So we just write lowest 64 bits of that value. setBigUint64(view, blockLen - 8, BigInt(this.length * 8), isLE); this.process(view, 0); const oview = createView(out); const len = this.outputLen; // NOTE: we do division by 4 later, which should be fused in single op with modulo by JIT if (len % 4) throw new Error('_sha2: outputLen should be aligned to 32bit'); const outLen = len / 4; const state = this.get(); if (outLen > state.length) throw new Error('_sha2: outputLen bigger than state'); for (let i = 0; i < outLen; i++) oview.setUint32(4 * i, state[i], isLE); } digest() { const { buffer, outputLen } = this; this.digestInto(buffer); const res = buffer.slice(0, outputLen); this.destroy(); return res; } _cloneInto(to) { to || (to = new this.constructor()); to.set(...this.get()); const { blockLen, buffer, length, finished, destroyed, pos } = this; to.length = length; to.pos = pos; to.finished = finished; to.destroyed = destroyed; if (length % blockLen) to.buffer.set(buffer); return to; } } // SHA2-256 need to try 2^128 hashes to execute birthday attack. // BTC network is doing 2^70 hashes/sec (2^95 hashes/year) as per late 2024. // Round constants: // first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311) // prettier-ignore const SHA256_K = /* @__PURE__ */ new Uint32Array([ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 ]); // Initial state: // first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19 // prettier-ignore const SHA256_IV = /* @__PURE__ */ new Uint32Array([ 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 ]); // Temporary buffer, not used to store anything between runs // Named this way because it matches specification. const SHA256_W = /* @__PURE__ */ new Uint32Array(64); class SHA256 extends HashMD { constructor() { super(64, 32, 8, false); // We cannot use array here since array allows indexing by variable // which means optimizer/compiler cannot use registers. this.A = SHA256_IV[0] | 0; this.B = SHA256_IV[1] | 0; this.C = SHA256_IV[2] | 0; this.D = SHA256_IV[3] | 0; this.E = SHA256_IV[4] | 0; this.F = SHA256_IV[5] | 0; this.G = SHA256_IV[6] | 0; this.H = SHA256_IV[7] | 0; } get() { const { A, B, C, D, E, F, G, H } = this; return [A, B, C, D, E, F, G, H]; } // prettier-ignore set(A, B, C, D, E, F, G, H) { this.A = A | 0; this.B = B | 0; this.C = C | 0; this.D = D | 0; this.E = E | 0; this.F = F | 0; this.G = G | 0; this.H = H | 0; } process(view, offset) { // Extend the first 16 words into the remaining 48 words w[16..63] of the message schedule array for (let i = 0; i < 16; i++, offset += 4) SHA256_W[i] = view.getUint32(offset, false); for (let i = 16; i < 64; i++) { const W15 = SHA256_W[i - 15]; const W2 = SHA256_W[i - 2]; const s0 = rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >>> 3); const s1 = rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >>> 10); SHA256_W[i] = (s1 + SHA256_W[i - 7] + s0 + SHA256_W[i - 16]) | 0; } // Compression function main loop, 64 rounds let { A, B, C, D, E, F, G, H } = this; for (let i = 0; i < 64; i++) { const sigma1 = rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25); const T1 = (H + sigma1 + Chi(E, F, G) + SHA256_K[i] + SHA256_W[i]) | 0; const sigma0 = rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22); const T2 = (sigma0 + Maj(A, B, C)) | 0; H = G; G = F; F = E; E = (D + T1) | 0; D = C; C = B; B = A; A = (T1 + T2) | 0; } // Add the compressed chunk to the current hash value A = (A + this.A) | 0; B = (B + this.B) | 0; C = (C + this.C) | 0; D = (D + this.D) | 0; E = (E + this.E) | 0; F = (F + this.F) | 0; G = (G + this.G) | 0; H = (H + this.H) | 0; this.set(A, B, C, D, E, F, G, H); } roundClean() { SHA256_W.fill(0); } destroy() { this.set(0, 0, 0, 0, 0, 0, 0, 0); this.buffer.fill(0); } } // Constants from https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf class SHA224 extends SHA256 { constructor() { super(); this.A = 0xc1059ed8 | 0; this.B = 0x367cd507 | 0; this.C = 0x3070dd17 | 0; this.D = 0xf70e5939 | 0; this.E = 0xffc00b31 | 0; this.F = 0x68581511 | 0; this.G = 0x64f98fa7 | 0; this.H = 0xbefa4fa4 | 0; this.outputLen = 28; } } /** * SHA2-256 hash function * @param message - data that would be hashed */ const sha256 = /* @__PURE__ */ wrapConstructor(() => new SHA256()); /** * SHA2-224 hash function */ const sha224 = /* @__PURE__ */ wrapConstructor(() => new SHA224()); // Round contants (first 32 bits of the fractional parts of the cube roots of the first 80 primes 2..409): // prettier-ignore const [SHA512_Kh, SHA512_Kl] = /* @__PURE__ */ (() => u64.split([ '0x428a2f98d728ae22', '0x7137449123ef65cd', '0xb5c0fbcfec4d3b2f', '0xe9b5dba58189dbbc', '0x3956c25bf348b538', '0x59f111f1b605d019', '0x923f82a4af194f9b', '0xab1c5ed5da6d8118', '0xd807aa98a3030242', '0x12835b0145706fbe', '0x243185be4ee4b28c', '0x550c7dc3d5ffb4e2', '0x72be5d74f27b896f', '0x80deb1fe3b1696b1', '0x9bdc06a725c71235', '0xc19bf174cf692694', '0xe49b69c19ef14ad2', '0xefbe4786384f25e3', '0x0fc19dc68b8cd5b5', '0x240ca1cc77ac9c65', '0x2de92c6f592b0275', '0x4a7484aa6ea6e483', '0x5cb0a9dcbd41fbd4', '0x76f988da831153b5', '0x983e5152ee66dfab', '0xa831c66d2db43210', '0xb00327c898fb213f', '0xbf597fc7beef0ee4', '0xc6e00bf33da88fc2', '0xd5a79147930aa725', '0x06ca6351e003826f', '0x142929670a0e6e70', '0x27b70a8546d22ffc', '0x2e1b21385c26c926', '0x4d2c6dfc5ac42aed', '0x53380d139d95b3df', '0x650a73548baf63de', '0x766a0abb3c77b2a8', '0x81c2c92e47edaee6', '0x92722c851482353b', '0xa2bfe8a14cf10364', '0xa81a664bbc423001', '0xc24b8b70d0f89791', '0xc76c51a30654be30', '0xd192e819d6ef5218', '0xd69906245565a910', '0xf40e35855771202a', '0x106aa07032bbd1b8', '0x19a4c116b8d2d0c8', '0x1e376c085141ab53', '0x2748774cdf8eeb99', '0x34b0bcb5e19b48a8', '0x391c0cb3c5c95a63', '0x4ed8aa4ae3418acb', '0x5b9cca4f7763e373', '0x682e6ff3d6b2b8a3', '0x748f82ee5defb2fc', '0x78a5636f43172f60', '0x84c87814a1f0ab72', '0x8cc702081a6439ec', '0x90befffa23631e28', '0xa4506cebde82bde9', '0xbef9a3f7b2c67915', '0xc67178f2e372532b', '0xca273eceea26619c', '0xd186b8c721c0c207', '0xeada7dd6cde0eb1e', '0xf57d4f7fee6ed178', '0x06f067aa72176fba', '0x0a637dc5a2c898a6', '0x113f9804bef90dae', '0x1b710b35131c471b', '0x28db77f523047d84', '0x32caab7b40c72493', '0x3c9ebe0a15c9bebc', '0x431d67c49c100d4c', '0x4cc5d4becb3e42b6', '0x597f299cfc657e2a', '0x5fcb6fab3ad6faec', '0x6c44198c4a475817' ].map(n => BigInt(n))))(); // Temporary buffer, not used to store anything between runs const SHA512_W_H = /* @__PURE__ */ new Uint32Array(80); const SHA512_W_L = /* @__PURE__ */ new Uint32Array(80); class SHA512 extends HashMD { constructor() { super(128, 64, 16, false); // We cannot use array here since array allows indexing by variable which means optimizer/compiler cannot use registers. // Also looks cleaner and easier to verify with spec. // Initial state (first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19): // h -- high 32 bits, l -- low 32 bits this.Ah = 0x6a09e667 | 0; this.Al = 0xf3bcc908 | 0; this.Bh = 0xbb67ae85 | 0; this.Bl = 0x84caa73b | 0; this.Ch = 0x3c6ef372 | 0; this.Cl = 0xfe94f82b | 0; this.Dh = 0xa54ff53a | 0; this.Dl = 0x5f1d36f1 | 0; this.Eh = 0x510e527f | 0; this.El = 0xade682d1 | 0; this.Fh = 0x9b05688c | 0; this.Fl = 0x2b3e6c1f | 0; this.Gh = 0x1f83d9ab | 0; this.Gl = 0xfb41bd6b | 0; this.Hh = 0x5be0cd19 | 0; this.Hl = 0x137e2179 | 0; } // prettier-ignore get() { const { Ah, Al, Bh, Bl, Ch, Cl, Dh, Dl, Eh, El, Fh, Fl, Gh, Gl, Hh, Hl } = this; return [Ah, Al, Bh, Bl, Ch, Cl, Dh, Dl, Eh, El, Fh, Fl, Gh, Gl, Hh, Hl]; } // prettier-ignore set(Ah, Al, Bh, Bl, Ch, Cl, Dh, Dl, Eh, El, Fh, Fl, Gh, Gl, Hh, Hl) { this.Ah = Ah | 0; this.Al = Al | 0; this.Bh = Bh | 0; this.Bl = Bl | 0; this.Ch = Ch | 0; this.Cl = Cl | 0; this.Dh = Dh | 0; this.Dl = Dl | 0; this.Eh = Eh | 0; this.El = El | 0; this.Fh = Fh | 0; this.Fl = Fl | 0; this.Gh = Gh | 0; this.Gl = Gl | 0; this.Hh = Hh | 0; this.Hl = Hl | 0; } process(view, offset) { // Extend the first 16 words into the remaining 64 words w[16..79] of the message schedule array for (let i = 0; i < 16; i++, offset += 4) { SHA512_W_H[i] = view.getUint32(offset); SHA512_W_L[i] = view.getUint32((offset += 4)); } for (let i = 16; i < 80; i++) { // s0 := (w[i-15] rightrotate 1) xor (w[i-15] rightrotate 8) xor (w[i-15] rightshift 7) const W15h = SHA512_W_H[i - 15] | 0; const W15l = SHA512_W_L[i - 15] | 0; const s0h = u64.rotrSH(W15h, W15l, 1) ^ u64.rotrSH(W15h, W15l, 8) ^ u64.shrSH(W15h, W15l, 7); const s0l = u64.rotrSL(W15h, W15l, 1) ^ u64.rotrSL(W15h, W15l, 8) ^ u64.shrSL(W15h, W15l, 7); // s1 := (w[i-2] rightrotate 19) xor (w[i-2] rightrotate 61) xor (w[i-2] rightshift 6) const W2h = SHA512_W_H[i - 2] | 0; const W2l = SHA512_W_L[i - 2] | 0; const s1h = u64.rotrSH(W2h, W2l, 19) ^ u64.rotrBH(W2h, W2l, 61) ^ u64.shrSH(W2h, W2l, 6); const s1l = u64.rotrSL(W2h, W2l, 19) ^ u64.rotrBL(W2h, W2l, 61) ^ u64.shrSL(W2h, W2l, 6); // SHA256_W[i] = s0 + s1 + SHA256_W[i - 7] + SHA256_W[i - 16]; const SUMl = u64.add4L(s0l, s1l, SHA512_W_L[i - 7], SHA512_W_L[i - 16]); const SUMh = u64.add4H(SUMl, s0h, s1h, SHA512_W_H[i - 7], SHA512_W_H[i - 16]); SHA512_W_H[i] = SUMh | 0; SHA512_W_L[i] = SUMl | 0; } let { Ah, Al, Bh, Bl, Ch, Cl, Dh, Dl, Eh, El, Fh, Fl, Gh, Gl, Hh, Hl } = this; // Compression function main loop, 80 rounds for (let i = 0; i < 80; i++) { // S1 := (e rightrotate 14) xor (e rightrotate 18) xor (e rightrotate 41) const sigma1h = u64.rotrSH(Eh, El, 14) ^ u64.rotrSH(Eh, El, 18) ^ u64.rotrBH(Eh, El, 41); const sigma1l = u64.rotrSL(Eh, El, 14) ^ u64.rotrSL(Eh, El, 18) ^ u64.rotrBL(Eh, El, 41); //const T1 = (H + sigma1 + Chi(E, F, G) + SHA256_K[i] + SHA256_W[i]) | 0; const CHIh = (Eh & Fh) ^ (~Eh & Gh); const CHIl = (El & Fl) ^ (~El & Gl); // T1 = H + sigma1 + Chi(E, F, G) + SHA512_K[i] + SHA512_W[i] // prettier-ignore const T1ll = u64.add5L(Hl, sigma1l, CHIl, SHA512_Kl[i], SHA512_W_L[i]); const T1h = u64.add5H(T1ll, Hh, sigma1h, CHIh, SHA512_Kh[i], SHA512_W_H[i]); const T1l = T1ll | 0; // S0 := (a rightrotate 28) xor (a rightrotate 34) xor (a rightrotate 39) const sigma0h = u64.rotrSH(Ah, Al, 28) ^ u64.rotrBH(Ah, Al, 34) ^ u64.rotrBH(Ah, Al, 39); const sigma0l = u64.rotrSL(Ah, Al, 28) ^ u64.rotrBL(Ah, Al, 34) ^ u64.rotrBL(Ah, Al, 39); const MAJh = (Ah & Bh) ^ (Ah & Ch) ^ (Bh & Ch); const MAJl = (Al & Bl) ^ (Al & Cl) ^ (Bl & Cl); Hh = Gh | 0; Hl = Gl | 0; Gh = Fh | 0; Gl = Fl | 0; Fh = Eh | 0; Fl = El | 0; ({ h: Eh, l: El } = u64.add(Dh | 0, Dl | 0, T1h | 0, T1l | 0)); Dh = Ch | 0; Dl = Cl | 0; Ch = Bh | 0; Cl = Bl | 0; Bh = Ah | 0; Bl = Al | 0; const All = u64.add3L(T1l, sigma0l, MAJl); Ah = u64.add3H(All, T1h, sigma0h, MAJh); Al = All | 0; } // Add the compressed chunk to the current hash value ({ h: Ah, l: Al } = u64.add(this.Ah | 0, this.Al | 0, Ah | 0, Al | 0)); ({ h: Bh, l: Bl } = u64.add(this.Bh | 0, this.Bl | 0, Bh | 0, Bl | 0)); ({ h: Ch, l: Cl } = u64.add(this.Ch | 0, this.Cl | 0, Ch | 0, Cl | 0)); ({ h: Dh, l: Dl } = u64.add(this.Dh | 0, this.Dl | 0, Dh | 0, Dl | 0)); ({ h: Eh, l: El } = u64.add(this.Eh | 0, this.El | 0, Eh | 0, El | 0)); ({ h: Fh, l: Fl } = u64.add(this.Fh | 0, this.Fl | 0, Fh | 0, Fl | 0)); ({ h: Gh, l: Gl } = u64.add(this.Gh | 0, this.Gl | 0, Gh | 0, Gl | 0)); ({ h: Hh, l: Hl } = u64.add(this.Hh | 0, this.Hl | 0, Hh | 0, Hl | 0)); this.set(Ah, Al, Bh, Bl, Ch, Cl, Dh, Dl, Eh, El, Fh, Fl, Gh, Gl, Hh, Hl); } roundClean() { SHA512_W_H.fill(0); SHA512_W_L.fill(0); } destroy() { this.buffer.fill(0); this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); } } class SHA384 extends SHA512 { constructor() { super(); // h -- high 32 bits, l -- low 32 bits this.Ah = 0xcbbb9d5d | 0; this.Al = 0xc1059ed8 | 0; this.Bh = 0x629a292a | 0; this.Bl = 0x367cd507 | 0; this.Ch = 0x9159015a | 0; this.Cl = 0x3070dd17 | 0; this.Dh = 0x152fecd8 | 0; this.Dl = 0xf70e5939 | 0; this.Eh = 0x67332667 | 0; this.El = 0xffc00b31 | 0; this.Fh = 0x8eb44a87 | 0; this.Fl = 0x68581511 | 0; this.Gh = 0xdb0c2e0d | 0; this.Gl = 0x64f98fa7 | 0; this.Hh = 0x47b5481d | 0; this.Hl = 0xbefa4fa4 | 0; this.outputLen = 48; } } const sha512 = /* @__PURE__ */ wrapConstructor(() => new SHA512()); const sha384 = /* @__PURE__ */ wrapConstructor(() => new SHA384()); export { Chi as C, HashMD as H, Maj as M, sha384 as a, sha512 as b, sha224 as c, sha256 as s };