@proton/ccxt
Version:
A JavaScript / TypeScript / Python / C# / PHP cryptocurrency trading library with support for 130+ exchanges
353 lines (350 loc) • 13.9 kB
JavaScript
// ----------------------------------------------------------------------------
// PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN:
// https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code
// EDIT THE CORRESPONDENT .ts FILE INSTEAD
import { number as assertNumber } from './_assert.js';
import { toBytes, wrapConstructorWithOpts, u32 } from './utils.js';
import { Keccak } from './sha3.js';
// cSHAKE && KMAC (NIST SP800-185)
function leftEncode(n) {
const res = [n & 0xff];
n >>= 8;
for (; n > 0; n >>= 8)
res.unshift(n & 0xff);
res.unshift(res.length);
return new Uint8Array(res);
}
function rightEncode(n) {
const res = [n & 0xff];
n >>= 8;
for (; n > 0; n >>= 8)
res.unshift(n & 0xff);
res.push(res.length);
return new Uint8Array(res);
}
function chooseLen(opts, outputLen) {
return opts.dkLen === undefined ? outputLen : opts.dkLen;
}
const toBytesOptional = (buf) => (buf !== undefined ? toBytes(buf) : new Uint8Array([]));
// NOTE: second modulo is necessary since we don't need to add padding if current element takes whole block
const getPadding = (len, block) => new Uint8Array((block - (len % block)) % block);
// Personalization
function cshakePers(hash, opts = {}) {
if (!opts || (!opts.personalization && !opts.NISTfn))
return hash;
// Encode and pad inplace to avoid unneccesary memory copies/slices (so we don't need to zero them later)
// bytepad(encode_string(N) || encode_string(S), 168)
const blockLenBytes = leftEncode(hash.blockLen);
const fn = toBytesOptional(opts.NISTfn);
const fnLen = leftEncode(8 * fn.length); // length in bits
const pers = toBytesOptional(opts.personalization);
const persLen = leftEncode(8 * pers.length); // length in bits
if (!fn.length && !pers.length)
return hash;
hash.suffix = 0x04;
hash.update(blockLenBytes).update(fnLen).update(fn).update(persLen).update(pers);
let totalLen = blockLenBytes.length + fnLen.length + fn.length + persLen.length + pers.length;
hash.update(getPadding(totalLen, hash.blockLen));
return hash;
}
const gencShake = (suffix, blockLen, outputLen) => wrapConstructorWithOpts((opts = {}) => cshakePers(new Keccak(blockLen, suffix, chooseLen(opts, outputLen), true), opts));
export const cshake128 = gencShake(0x1f, 168, 128 / 8);
export const cshake256 = gencShake(0x1f, 136, 256 / 8);
class KMAC extends Keccak {
constructor(blockLen, outputLen, enableXOF, key, opts = {}) {
super(blockLen, 0x1f, outputLen, enableXOF);
cshakePers(this, { NISTfn: 'KMAC', personalization: opts.personalization });
key = toBytes(key);
// 1. newX = bytepad(encode_string(K), 168) || X || right_encode(L).
const blockLenBytes = leftEncode(this.blockLen);
const keyLen = leftEncode(8 * key.length);
this.update(blockLenBytes).update(keyLen).update(key);
const totalLen = blockLenBytes.length + keyLen.length + key.length;
this.update(getPadding(totalLen, this.blockLen));
}
finish() {
if (!this.finished)
this.update(rightEncode(this.enableXOF ? 0 : this.outputLen * 8)); // outputLen in bits
super.finish();
}
_cloneInto(to) {
// Create new instance without calling constructor since key already in state and we don't know it.
// Force "to" to be instance of KMAC instead of Sha3.
if (!to) {
to = Object.create(Object.getPrototypeOf(this), {});
to.state = this.state.slice();
to.blockLen = this.blockLen;
to.state32 = u32(to.state);
}
return super._cloneInto(to);
}
clone() {
return this._cloneInto();
}
}
function genKmac(blockLen, outputLen, xof = false) {
const kmac = (key, message, opts) => kmac.create(key, opts).update(message).digest();
kmac.create = (key, opts = {}) => new KMAC(blockLen, chooseLen(opts, outputLen), xof, key, opts);
return kmac;
}
export const kmac128 = genKmac(168, 128 / 8);
export const kmac256 = genKmac(136, 256 / 8);
export const kmac128xof = genKmac(168, 128 / 8, true);
export const kmac256xof = genKmac(136, 256 / 8, true);
// TupleHash
// Usage: tuple(['ab', 'cd']) != tuple(['a', 'bcd'])
class TupleHash extends Keccak {
constructor(blockLen, outputLen, enableXOF, opts = {}) {
super(blockLen, 0x1f, outputLen, enableXOF);
cshakePers(this, { NISTfn: 'TupleHash', personalization: opts.personalization });
// Change update after cshake processed
this.update = (data) => {
data = toBytes(data);
super.update(leftEncode(data.length * 8));
super.update(data);
return this;
};
}
finish() {
if (!this.finished)
super.update(rightEncode(this.enableXOF ? 0 : this.outputLen * 8)); // outputLen in bits
super.finish();
}
_cloneInto(to) {
to || (to = new TupleHash(this.blockLen, this.outputLen, this.enableXOF));
return super._cloneInto(to);
}
clone() {
return this._cloneInto();
}
}
function genTuple(blockLen, outputLen, xof = false) {
const tuple = (messages, opts) => {
const h = tuple.create(opts);
for (const msg of messages)
h.update(msg);
return h.digest();
};
tuple.create = (opts = {}) => new TupleHash(blockLen, chooseLen(opts, outputLen), xof, opts);
return tuple;
}
export const tuplehash128 = genTuple(168, 128 / 8);
export const tuplehash256 = genTuple(136, 256 / 8);
export const tuplehash128xof = genTuple(168, 128 / 8, true);
export const tuplehash256xof = genTuple(136, 256 / 8, true);
class ParallelHash extends Keccak {
constructor(blockLen, outputLen, leafCons, enableXOF, opts = {}) {
super(blockLen, 0x1f, outputLen, enableXOF);
this.leafCons = leafCons;
this.chunkPos = 0; // Position of current block in chunk
this.chunksDone = 0; // How many chunks we already have
cshakePers(this, { NISTfn: 'ParallelHash', personalization: opts.personalization });
let { blockLen: B } = opts;
B || (B = 8);
assertNumber(B);
this.chunkLen = B;
super.update(leftEncode(B));
// Change update after cshake processed
this.update = (data) => {
data = toBytes(data);
const { chunkLen, leafCons } = this;
for (let pos = 0, len = data.length; pos < len;) {
if (this.chunkPos == chunkLen || !this.leafHash) {
if (this.leafHash) {
super.update(this.leafHash.digest());
this.chunksDone++;
}
this.leafHash = leafCons();
this.chunkPos = 0;
}
const take = Math.min(chunkLen - this.chunkPos, len - pos);
this.leafHash.update(data.subarray(pos, pos + take));
this.chunkPos += take;
pos += take;
}
return this;
};
}
finish() {
if (this.finished)
return;
if (this.leafHash) {
super.update(this.leafHash.digest());
this.chunksDone++;
}
super.update(rightEncode(this.chunksDone));
super.update(rightEncode(this.enableXOF ? 0 : this.outputLen * 8)); // outputLen in bits
super.finish();
}
_cloneInto(to) {
to || (to = new ParallelHash(this.blockLen, this.outputLen, this.leafCons, this.enableXOF));
if (this.leafHash)
to.leafHash = this.leafHash._cloneInto(to.leafHash);
to.chunkPos = this.chunkPos;
to.chunkLen = this.chunkLen;
to.chunksDone = this.chunksDone;
return super._cloneInto(to);
}
destroy() {
super.destroy.call(this);
if (this.leafHash)
this.leafHash.destroy();
}
clone() {
return this._cloneInto();
}
}
function genParallel(blockLen, outputLen, leaf, xof = false) {
const parallel = (message, opts) => parallel.create(opts).update(message).digest();
parallel.create = (opts = {}) => new ParallelHash(blockLen, chooseLen(opts, outputLen), () => leaf.create({ dkLen: 2 * outputLen }), xof, opts);
return parallel;
}
export const parallelhash128 = genParallel(168, 128 / 8, cshake128);
export const parallelhash256 = genParallel(136, 256 / 8, cshake256);
export const parallelhash128xof = genParallel(168, 128 / 8, cshake128, true);
export const parallelhash256xof = genParallel(136, 256 / 8, cshake256, true);
// Kangaroo
// Same as NIST rightEncode, but returns [0] for zero string
function rightEncodeK12(n) {
const res = [];
for (; n > 0; n >>= 8)
res.unshift(n & 0xff);
res.push(res.length);
return new Uint8Array(res);
}
const EMPTY = new Uint8Array([]);
class KangarooTwelve extends Keccak {
constructor(blockLen, leafLen, outputLen, rounds, opts) {
super(blockLen, 0x07, outputLen, true, rounds);
this.leafLen = leafLen;
this.chunkLen = 8192;
this.chunkPos = 0; // Position of current block in chunk
this.chunksDone = 0; // How many chunks we already have
const { personalization } = opts;
this.personalization = toBytesOptional(personalization);
}
update(data) {
data = toBytes(data);
const { chunkLen, blockLen, leafLen, rounds } = this;
for (let pos = 0, len = data.length; pos < len;) {
if (this.chunkPos == chunkLen) {
if (this.leafHash)
super.update(this.leafHash.digest());
else {
this.suffix = 0x06; // Its safe to change suffix here since its used only in digest()
super.update(new Uint8Array([3, 0, 0, 0, 0, 0, 0, 0]));
}
this.leafHash = new Keccak(blockLen, 0x0b, leafLen, false, rounds);
this.chunksDone++;
this.chunkPos = 0;
}
const take = Math.min(chunkLen - this.chunkPos, len - pos);
const chunk = data.subarray(pos, pos + take);
if (this.leafHash)
this.leafHash.update(chunk);
else
super.update(chunk);
this.chunkPos += take;
pos += take;
}
return this;
}
finish() {
if (this.finished)
return;
const { personalization } = this;
this.update(personalization).update(rightEncodeK12(personalization.length));
// Leaf hash
if (this.leafHash) {
super.update(this.leafHash.digest());
super.update(rightEncodeK12(this.chunksDone));
super.update(new Uint8Array([0xff, 0xff]));
}
super.finish.call(this);
}
destroy() {
super.destroy.call(this);
if (this.leafHash)
this.leafHash.destroy();
// We cannot zero personalization buffer since it is user provided and we don't want to mutate user input
this.personalization = EMPTY;
}
_cloneInto(to) {
const { blockLen, leafLen, leafHash, outputLen, rounds } = this;
to || (to = new KangarooTwelve(blockLen, leafLen, outputLen, rounds, {}));
super._cloneInto(to);
if (leafHash)
to.leafHash = leafHash._cloneInto(to.leafHash);
to.personalization.set(this.personalization);
to.leafLen = this.leafLen;
to.chunkPos = this.chunkPos;
to.chunksDone = this.chunksDone;
return to;
}
clone() {
return this._cloneInto();
}
}
// Default to 32 bytes, so it can be used without opts
export const k12 = wrapConstructorWithOpts((opts = {}) => new KangarooTwelve(168, 32, chooseLen(opts, 32), 12, opts));
// MarsupilamiFourteen
export const m14 = wrapConstructorWithOpts((opts = {}) => new KangarooTwelve(136, 64, chooseLen(opts, 64), 14, opts));
// https://keccak.team/files/CSF-0.1.pdf
// + https://github.com/XKCP/XKCP/tree/master/lib/high/Keccak/PRG
class KeccakPRG extends Keccak {
constructor(capacity) {
assertNumber(capacity);
// Rho should be full bytes
if (capacity < 0 || capacity > 1600 - 10 || (1600 - capacity - 2) % 8)
throw new Error('KeccakPRG: Invalid capacity');
// blockLen = rho in bytes
super((1600 - capacity - 2) / 8, 0, 0, true);
this.rate = 1600 - capacity;
this.posOut = Math.floor((this.rate + 7) / 8);
}
keccak() {
// Duplex padding
this.state[this.pos] ^= 0x01;
this.state[this.blockLen] ^= 0x02; // Rho is full bytes
super.keccak();
this.pos = 0;
this.posOut = 0;
}
update(data) {
super.update(data);
this.posOut = this.blockLen;
return this;
}
feed(data) {
return this.update(data);
}
finish() { }
digestInto(out) {
throw new Error('KeccakPRG: digest is not allowed, please use .fetch instead.');
}
fetch(bytes) {
return this.xof(bytes);
}
// Ensure irreversibility (even if state leaked previous outputs cannot be computed)
forget() {
if (this.rate < 1600 / 2 + 1)
throw new Error('KeccakPRG: rate too low to use forget');
this.keccak();
for (let i = 0; i < this.blockLen; i++)
this.state[i] = 0;
this.pos = this.blockLen;
this.keccak();
this.posOut = this.blockLen;
}
_cloneInto(to) {
const { rate } = this;
to || (to = new KeccakPRG(1600 - rate));
super._cloneInto(to);
to.rate = rate;
return to;
}
clone() {
return this._cloneInto();
}
}
export const keccakprg = (capacity = 254) => new KeccakPRG(capacity);