@proton/ccxt
Version:
A JavaScript / TypeScript / Python / C# / PHP cryptocurrency trading library with support for 130+ exchanges
224 lines (221 loc) • 10 kB
JavaScript
// ----------------------------------------------------------------------------
// PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN:
// https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code
// EDIT THE CORRESPONDENT .ts FILE INSTEAD
import assert from './_assert.js';
import { sha256 } from './sha256.js';
import { pbkdf2 } from './pbkdf2.js';
import { asyncLoop, checkOpts, u32 } from './utils.js';
// RFC 7914 Scrypt KDF
// Left rotate for uint32
const rotl = (a, b) => (a << b) | (a >>> (32 - b));
// The main Scrypt loop: uses Salsa extensively.
// Six versions of the function were tried, this is the fastest one.
// prettier-ignore
function XorAndSalsa(prev, pi, input, ii, out, oi) {
// Based on https://cr.yp.to/salsa20.html
// Xor blocks
let y00 = prev[pi++] ^ input[ii++], y01 = prev[pi++] ^ input[ii++];
let y02 = prev[pi++] ^ input[ii++], y03 = prev[pi++] ^ input[ii++];
let y04 = prev[pi++] ^ input[ii++], y05 = prev[pi++] ^ input[ii++];
let y06 = prev[pi++] ^ input[ii++], y07 = prev[pi++] ^ input[ii++];
let y08 = prev[pi++] ^ input[ii++], y09 = prev[pi++] ^ input[ii++];
let y10 = prev[pi++] ^ input[ii++], y11 = prev[pi++] ^ input[ii++];
let y12 = prev[pi++] ^ input[ii++], y13 = prev[pi++] ^ input[ii++];
let y14 = prev[pi++] ^ input[ii++], y15 = prev[pi++] ^ input[ii++];
// Save state to temporary variables (salsa)
let x00 = y00, x01 = y01, x02 = y02, x03 = y03, x04 = y04, x05 = y05, x06 = y06, x07 = y07, x08 = y08, x09 = y09, x10 = y10, x11 = y11, x12 = y12, x13 = y13, x14 = y14, x15 = y15;
// Main loop (salsa)
for (let i = 0; i < 8; i += 2) {
x04 ^= rotl(x00 + x12 | 0, 7);
x08 ^= rotl(x04 + x00 | 0, 9);
x12 ^= rotl(x08 + x04 | 0, 13);
x00 ^= rotl(x12 + x08 | 0, 18);
x09 ^= rotl(x05 + x01 | 0, 7);
x13 ^= rotl(x09 + x05 | 0, 9);
x01 ^= rotl(x13 + x09 | 0, 13);
x05 ^= rotl(x01 + x13 | 0, 18);
x14 ^= rotl(x10 + x06 | 0, 7);
x02 ^= rotl(x14 + x10 | 0, 9);
x06 ^= rotl(x02 + x14 | 0, 13);
x10 ^= rotl(x06 + x02 | 0, 18);
x03 ^= rotl(x15 + x11 | 0, 7);
x07 ^= rotl(x03 + x15 | 0, 9);
x11 ^= rotl(x07 + x03 | 0, 13);
x15 ^= rotl(x11 + x07 | 0, 18);
x01 ^= rotl(x00 + x03 | 0, 7);
x02 ^= rotl(x01 + x00 | 0, 9);
x03 ^= rotl(x02 + x01 | 0, 13);
x00 ^= rotl(x03 + x02 | 0, 18);
x06 ^= rotl(x05 + x04 | 0, 7);
x07 ^= rotl(x06 + x05 | 0, 9);
x04 ^= rotl(x07 + x06 | 0, 13);
x05 ^= rotl(x04 + x07 | 0, 18);
x11 ^= rotl(x10 + x09 | 0, 7);
x08 ^= rotl(x11 + x10 | 0, 9);
x09 ^= rotl(x08 + x11 | 0, 13);
x10 ^= rotl(x09 + x08 | 0, 18);
x12 ^= rotl(x15 + x14 | 0, 7);
x13 ^= rotl(x12 + x15 | 0, 9);
x14 ^= rotl(x13 + x12 | 0, 13);
x15 ^= rotl(x14 + x13 | 0, 18);
}
// Write output (salsa)
out[oi++] = (y00 + x00) | 0;
out[oi++] = (y01 + x01) | 0;
out[oi++] = (y02 + x02) | 0;
out[oi++] = (y03 + x03) | 0;
out[oi++] = (y04 + x04) | 0;
out[oi++] = (y05 + x05) | 0;
out[oi++] = (y06 + x06) | 0;
out[oi++] = (y07 + x07) | 0;
out[oi++] = (y08 + x08) | 0;
out[oi++] = (y09 + x09) | 0;
out[oi++] = (y10 + x10) | 0;
out[oi++] = (y11 + x11) | 0;
out[oi++] = (y12 + x12) | 0;
out[oi++] = (y13 + x13) | 0;
out[oi++] = (y14 + x14) | 0;
out[oi++] = (y15 + x15) | 0;
}
function BlockMix(input, ii, out, oi, r) {
// The block B is r 128-byte chunks (which is equivalent of 2r 64-byte chunks)
let head = oi + 0;
let tail = oi + 16 * r;
for (let i = 0; i < 16; i++)
out[tail + i] = input[ii + (2 * r - 1) * 16 + i]; // X ← B[2r−1]
for (let i = 0; i < r; i++, head += 16, ii += 16) {
// We write odd & even Yi at same time. Even: 0bXXXXX0 Odd: 0bXXXXX1
XorAndSalsa(out, tail, input, ii, out, head); // head[i] = Salsa(blockIn[2*i] ^ tail[i-1])
if (i > 0)
tail += 16; // First iteration overwrites tmp value in tail
XorAndSalsa(out, head, input, (ii += 16), out, tail); // tail[i] = Salsa(blockIn[2*i+1] ^ head[i])
}
}
// Common prologue and epilogue for sync/async functions
function scryptInit(password, salt, _opts) {
// Maxmem - 1GB+1KB by default
const opts = checkOpts({
dkLen: 32,
asyncTick: 10,
maxmem: 1024 ** 3 + 1024,
}, _opts);
const { N, r, p, dkLen, asyncTick, maxmem, onProgress } = opts;
assert.number(N);
assert.number(r);
assert.number(p);
assert.number(dkLen);
assert.number(asyncTick);
assert.number(maxmem);
if (onProgress !== undefined && typeof onProgress !== 'function')
throw new Error('progressCb should be function');
const blockSize = 128 * r;
const blockSize32 = blockSize / 4;
if (N <= 1 || (N & (N - 1)) !== 0 || N >= 2 ** (blockSize / 8) || N > 2 ** 32) {
// NOTE: we limit N to be less than 2**32 because of 32 bit variant of Integrify function
// There is no JS engines that allows alocate more than 4GB per single Uint8Array for now, but can change in future.
throw new Error('Scrypt: N must be larger than 1, a power of 2, less than 2^(128 * r / 8) and less than 2^32');
}
if (p < 0 || p > ((2 ** 32 - 1) * 32) / blockSize) {
throw new Error('Scrypt: p must be a positive integer less than or equal to ((2^32 - 1) * 32) / (128 * r)');
}
if (dkLen < 0 || dkLen > (2 ** 32 - 1) * 32) {
throw new Error('Scrypt: dkLen should be positive integer less than or equal to (2^32 - 1) * 32');
}
const memUsed = blockSize * (N + p);
if (memUsed > maxmem) {
throw new Error(`Scrypt: parameters too large, ${memUsed} (128 * r * (N + p)) > ${maxmem} (maxmem)`);
}
// [B0...Bp−1] ← PBKDF2HMAC-SHA256(Passphrase, Salt, 1, blockSize*ParallelizationFactor)
// Since it has only one iteration there is no reason to use async variant
const B = pbkdf2(sha256, password, salt, { c: 1, dkLen: blockSize * p });
const B32 = u32(B);
// Re-used between parallel iterations. Array(iterations) of B
const V = u32(new Uint8Array(blockSize * N));
const tmp = u32(new Uint8Array(blockSize));
let blockMixCb = () => { };
if (onProgress) {
const totalBlockMix = 2 * N * p;
// Invoke callback if progress changes from 10.01 to 10.02
// Allows to draw smooth progress bar on up to 8K screen
const callbackPer = Math.max(Math.floor(totalBlockMix / 10000), 1);
let blockMixCnt = 0;
blockMixCb = () => {
blockMixCnt++;
if (onProgress && (!(blockMixCnt % callbackPer) || blockMixCnt === totalBlockMix))
onProgress(blockMixCnt / totalBlockMix);
};
}
return { N, r, p, dkLen, blockSize32, V, B32, B, tmp, blockMixCb, asyncTick };
}
function scryptOutput(password, dkLen, B, V, tmp) {
const res = pbkdf2(sha256, password, B, { c: 1, dkLen });
B.fill(0);
V.fill(0);
tmp.fill(0);
return res;
}
/**
* Scrypt KDF from RFC 7914.
* @param password - pass
* @param salt - salt
* @param opts - parameters
* - `N` is cpu/mem work factor (power of 2 e.g. 2**18)
* - `r` is block size (8 is common), fine-tunes sequential memory read size and performance
* - `p` is parallelization factor (1 is common)
* - `dkLen` is output key length in bytes e.g. 32.
* - `asyncTick` - (default: 10) max time in ms for which async function can block execution
* - `maxmem` - (default: `1024 ** 3 + 1024` aka 1GB+1KB). A limit that the app could use for scrypt
* - `onProgress` - callback function that would be executed for progress report
* @returns Derived key
*/
export function scrypt(password, salt, opts) {
const { N, r, p, dkLen, blockSize32, V, B32, B, tmp, blockMixCb } = scryptInit(password, salt, opts);
for (let pi = 0; pi < p; pi++) {
const Pi = blockSize32 * pi;
for (let i = 0; i < blockSize32; i++)
V[i] = B32[Pi + i]; // V[0] = B[i]
for (let i = 0, pos = 0; i < N - 1; i++) {
BlockMix(V, pos, V, (pos += blockSize32), r); // V[i] = BlockMix(V[i-1]);
blockMixCb();
}
BlockMix(V, (N - 1) * blockSize32, B32, Pi, r); // Process last element
blockMixCb();
for (let i = 0; i < N; i++) {
// First u32 of the last 64-byte block (u32 is LE)
const j = B32[Pi + blockSize32 - 16] % N; // j = Integrify(X) % iterations
for (let k = 0; k < blockSize32; k++)
tmp[k] = B32[Pi + k] ^ V[j * blockSize32 + k]; // tmp = B ^ V[j]
BlockMix(tmp, 0, B32, Pi, r); // B = BlockMix(B ^ V[j])
blockMixCb();
}
}
return scryptOutput(password, dkLen, B, V, tmp);
}
/**
* Scrypt KDF from RFC 7914.
*/
export async function scryptAsync(password, salt, opts) {
const { N, r, p, dkLen, blockSize32, V, B32, B, tmp, blockMixCb, asyncTick } = scryptInit(password, salt, opts);
for (let pi = 0; pi < p; pi++) {
const Pi = blockSize32 * pi;
for (let i = 0; i < blockSize32; i++)
V[i] = B32[Pi + i]; // V[0] = B[i]
let pos = 0;
await asyncLoop(N - 1, asyncTick, (i) => {
BlockMix(V, pos, V, (pos += blockSize32), r); // V[i] = BlockMix(V[i-1]);
blockMixCb();
});
BlockMix(V, (N - 1) * blockSize32, B32, Pi, r); // Process last element
blockMixCb();
await asyncLoop(N, asyncTick, (i) => {
// First u32 of the last 64-byte block (u32 is LE)
const j = B32[Pi + blockSize32 - 16] % N; // j = Integrify(X) % iterations
for (let k = 0; k < blockSize32; k++)
tmp[k] = B32[Pi + k] ^ V[j * blockSize32 + k]; // tmp = B ^ V[j]
BlockMix(tmp, 0, B32, Pi, r); // B = BlockMix(B ^ V[j])
blockMixCb();
});
}
return scryptOutput(password, dkLen, B, V, tmp);
}