UNPKG

@proton/ccxt

Version:

A JavaScript / TypeScript / Python / C# / PHP cryptocurrency trading library with support for 130+ exchanges

1,017 lines (1,014 loc) 43.6 kB
// ---------------------------------------------------------------------------- // PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: // https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code // EDIT THE CORRESPONDENT .ts FILE INSTEAD /*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */ // Short Weierstrass curve. The formula is: y² = x³ + ax + b import * as mod from './modular.js'; import * as ut from './utils.js'; import { ensureBytes } from './utils.js'; import { wNAF, validateBasic } from './curve.js'; function validatePointOpts(curve) { const opts = validateBasic(curve); ut.validateObject(opts, { a: 'field', b: 'field', fromBytes: 'function', toBytes: 'function', }, { allowedPrivateKeyLengths: 'array', wrapPrivateKey: 'boolean', isTorsionFree: 'function', clearCofactor: 'function', allowInfinityPoint: 'boolean', }); const { endo, Fp, a } = opts; if (endo) { if (!Fp.eql(a, Fp.ZERO)) { throw new Error('Endomorphism can only be defined for Koblitz curves that have a=0'); } if (typeof endo !== 'object' || typeof endo.beta !== 'bigint' || typeof endo.splitScalar !== 'function') { throw new Error('Expected endomorphism with beta: bigint and splitScalar: function'); } } return Object.freeze({ ...opts }); } // ASN.1 DER encoding utilities const { bytesToNumberBE: b2n, hexToBytes: h2b } = ut; const DER = { // asn.1 DER encoding utils Err: class DERErr extends Error { constructor(m = '') { super(m); } }, _parseInt(data) { const { Err: E } = DER; if (data.length < 2 || data[0] !== 0x02) throw new E('Invalid signature integer tag'); const len = data[1]; const res = data.subarray(2, len + 2); if (!len || res.length !== len) throw new E('Invalid signature integer: wrong length'); if (res[0] === 0x00 && res[1] <= 0x7f) throw new E('Invalid signature integer: trailing length'); // ^ Weird condition: not about length, but about first bytes of number. return { d: b2n(res), l: data.subarray(len + 2) }; // d is data, l is left }, toSig(hex) { // parse DER signature const { Err: E } = DER; const data = typeof hex === 'string' ? h2b(hex) : hex; if (!(data instanceof Uint8Array)) throw new Error('ui8a expected'); let l = data.length; if (l < 2 || data[0] != 0x30) throw new E('Invalid signature tag'); if (data[1] !== l - 2) throw new E('Invalid signature: incorrect length'); const { d: r, l: sBytes } = DER._parseInt(data.subarray(2)); const { d: s, l: rBytesLeft } = DER._parseInt(sBytes); if (rBytesLeft.length) throw new E('Invalid signature: left bytes after parsing'); return { r, s }; }, hexFromSig(sig) { const slice = (s) => (Number.parseInt(s[0], 16) >= 8 ? '00' + s : s); // slice DER const h = (num) => { const hex = num.toString(16); return hex.length & 1 ? `0${hex}` : hex; }; const s = slice(h(sig.s)); const r = slice(h(sig.r)); const shl = s.length / 2; const rhl = r.length / 2; const sl = h(shl); const rl = h(rhl); return `30${h(rhl + shl + 4)}02${rl}${r}02${sl}${s}`; }, }; // Be friendly to bad ECMAScript parsers by not using bigint literals like 123n const _0n = BigInt(0); const _1n = BigInt(1); export function weierstrassPoints(opts) { const CURVE = validatePointOpts(opts); const { Fp } = CURVE; // All curves has same field / group length as for now, but they can differ /** * y² = x³ + ax + b: Short weierstrass curve formula * @returns y² */ function weierstrassEquation(x) { const { a, b } = CURVE; const x2 = Fp.sqr(x); // x * x const x3 = Fp.mul(x2, x); // x2 * x return Fp.add(Fp.add(x3, Fp.mul(x, a)), b); // x3 + a * x + b } // Valid group elements reside in range 1..n-1 function isWithinCurveOrder(num) { return typeof num === 'bigint' && _0n < num && num < CURVE.n; } function assertGE(num) { if (!isWithinCurveOrder(num)) throw new Error('Expected valid bigint: 0 < bigint < curve.n'); } // Validates if priv key is valid and converts it to bigint. // Supports options allowedPrivateKeyLengths and wrapPrivateKey. function normPrivateKeyToScalar(key) { const { allowedPrivateKeyLengths: lengths, nByteLength, wrapPrivateKey, n } = CURVE; if (lengths && typeof key !== 'bigint') { if (key instanceof Uint8Array) key = ut.bytesToHex(key); // Normalize to hex string, pad. E.g. P521 would norm 130-132 char hex to 132-char bytes if (typeof key !== 'string' || !lengths.includes(key.length)) throw new Error('Invalid key'); key = key.padStart(nByteLength * 2, '0'); } let num; try { num = typeof key === 'bigint' ? key : ut.bytesToNumberBE(ensureBytes('private key', key, nByteLength)); } catch (error) { throw new Error(`private key must be ${nByteLength} bytes, hex or bigint, not ${typeof key}`); } if (wrapPrivateKey) num = mod.mod(num, n); // disabled by default, enabled for BLS assertGE(num); // num in range [1..N-1] return num; } const pointPrecomputes = new Map(); function assertPrjPoint(other) { if (!(other instanceof Point)) throw new Error('ProjectivePoint expected'); } /** * Projective Point works in 3d / projective (homogeneous) coordinates: (x, y, z) ∋ (x=x/z, y=y/z) * Default Point works in 2d / affine coordinates: (x, y) * We're doing calculations in projective, because its operations don't require costly inversion. */ class Point { constructor(px, py, pz) { this.px = px; this.py = py; this.pz = pz; if (px == null || !Fp.isValid(px)) throw new Error('x required'); if (py == null || !Fp.isValid(py)) throw new Error('y required'); if (pz == null || !Fp.isValid(pz)) throw new Error('z required'); } // Does not validate if the point is on-curve. // Use fromHex instead, or call assertValidity() later. static fromAffine(p) { const { x, y } = p || {}; if (!p || !Fp.isValid(x) || !Fp.isValid(y)) throw new Error('invalid affine point'); if (p instanceof Point) throw new Error('projective point not allowed'); const is0 = (i) => Fp.eql(i, Fp.ZERO); // fromAffine(x:0, y:0) would produce (x:0, y:0, z:1), but we need (x:0, y:1, z:0) if (is0(x) && is0(y)) return Point.ZERO; return new Point(x, y, Fp.ONE); } get x() { return this.toAffine().x; } get y() { return this.toAffine().y; } /** * Takes a bunch of Projective Points but executes only one * inversion on all of them. Inversion is very slow operation, * so this improves performance massively. * Optimization: converts a list of projective points to a list of identical points with Z=1. */ static normalizeZ(points) { const toInv = Fp.invertBatch(points.map((p) => p.pz)); return points.map((p, i) => p.toAffine(toInv[i])).map(Point.fromAffine); } /** * Converts hash string or Uint8Array to Point. * @param hex short/long ECDSA hex */ static fromHex(hex) { const P = Point.fromAffine(CURVE.fromBytes(ensureBytes('pointHex', hex))); P.assertValidity(); return P; } // Multiplies generator point by privateKey. static fromPrivateKey(privateKey) { return Point.BASE.multiply(normPrivateKeyToScalar(privateKey)); } // "Private method", don't use it directly _setWindowSize(windowSize) { this._WINDOW_SIZE = windowSize; pointPrecomputes.delete(this); } // A point on curve is valid if it conforms to equation. assertValidity() { // Zero is valid point too! if (this.is0()) { if (CURVE.allowInfinityPoint) return; throw new Error('bad point: ZERO'); } // Some 3rd-party test vectors require different wording between here & `fromCompressedHex` const { x, y } = this.toAffine(); // Check if x, y are valid field elements if (!Fp.isValid(x) || !Fp.isValid(y)) throw new Error('bad point: x or y not FE'); const left = Fp.sqr(y); // y² const right = weierstrassEquation(x); // x³ + ax + b if (!Fp.eql(left, right)) throw new Error('bad point: equation left != right'); if (!this.isTorsionFree()) throw new Error('bad point: not in prime-order subgroup'); } hasEvenY() { const { y } = this.toAffine(); if (Fp.isOdd) return !Fp.isOdd(y); throw new Error("Field doesn't support isOdd"); } /** * Compare one point to another. */ equals(other) { assertPrjPoint(other); const { px: X1, py: Y1, pz: Z1 } = this; const { px: X2, py: Y2, pz: Z2 } = other; const U1 = Fp.eql(Fp.mul(X1, Z2), Fp.mul(X2, Z1)); const U2 = Fp.eql(Fp.mul(Y1, Z2), Fp.mul(Y2, Z1)); return U1 && U2; } /** * Flips point to one corresponding to (x, -y) in Affine coordinates. */ negate() { return new Point(this.px, Fp.neg(this.py), this.pz); } // Renes-Costello-Batina exception-free doubling formula. // There is 30% faster Jacobian formula, but it is not complete. // https://eprint.iacr.org/2015/1060, algorithm 3 // Cost: 8M + 3S + 3*a + 2*b3 + 15add. double() { const { a, b } = CURVE; const b3 = Fp.mul(b, 3n); const { px: X1, py: Y1, pz: Z1 } = this; let X3 = Fp.ZERO, Y3 = Fp.ZERO, Z3 = Fp.ZERO; // prettier-ignore let t0 = Fp.mul(X1, X1); // step 1 let t1 = Fp.mul(Y1, Y1); let t2 = Fp.mul(Z1, Z1); let t3 = Fp.mul(X1, Y1); t3 = Fp.add(t3, t3); // step 5 Z3 = Fp.mul(X1, Z1); Z3 = Fp.add(Z3, Z3); X3 = Fp.mul(a, Z3); Y3 = Fp.mul(b3, t2); Y3 = Fp.add(X3, Y3); // step 10 X3 = Fp.sub(t1, Y3); Y3 = Fp.add(t1, Y3); Y3 = Fp.mul(X3, Y3); X3 = Fp.mul(t3, X3); Z3 = Fp.mul(b3, Z3); // step 15 t2 = Fp.mul(a, t2); t3 = Fp.sub(t0, t2); t3 = Fp.mul(a, t3); t3 = Fp.add(t3, Z3); Z3 = Fp.add(t0, t0); // step 20 t0 = Fp.add(Z3, t0); t0 = Fp.add(t0, t2); t0 = Fp.mul(t0, t3); Y3 = Fp.add(Y3, t0); t2 = Fp.mul(Y1, Z1); // step 25 t2 = Fp.add(t2, t2); t0 = Fp.mul(t2, t3); X3 = Fp.sub(X3, t0); Z3 = Fp.mul(t2, t1); Z3 = Fp.add(Z3, Z3); // step 30 Z3 = Fp.add(Z3, Z3); return new Point(X3, Y3, Z3); } // Renes-Costello-Batina exception-free addition formula. // There is 30% faster Jacobian formula, but it is not complete. // https://eprint.iacr.org/2015/1060, algorithm 1 // Cost: 12M + 0S + 3*a + 3*b3 + 23add. add(other) { assertPrjPoint(other); const { px: X1, py: Y1, pz: Z1 } = this; const { px: X2, py: Y2, pz: Z2 } = other; let X3 = Fp.ZERO, Y3 = Fp.ZERO, Z3 = Fp.ZERO; // prettier-ignore const a = CURVE.a; const b3 = Fp.mul(CURVE.b, 3n); let t0 = Fp.mul(X1, X2); // step 1 let t1 = Fp.mul(Y1, Y2); let t2 = Fp.mul(Z1, Z2); let t3 = Fp.add(X1, Y1); let t4 = Fp.add(X2, Y2); // step 5 t3 = Fp.mul(t3, t4); t4 = Fp.add(t0, t1); t3 = Fp.sub(t3, t4); t4 = Fp.add(X1, Z1); let t5 = Fp.add(X2, Z2); // step 10 t4 = Fp.mul(t4, t5); t5 = Fp.add(t0, t2); t4 = Fp.sub(t4, t5); t5 = Fp.add(Y1, Z1); X3 = Fp.add(Y2, Z2); // step 15 t5 = Fp.mul(t5, X3); X3 = Fp.add(t1, t2); t5 = Fp.sub(t5, X3); Z3 = Fp.mul(a, t4); X3 = Fp.mul(b3, t2); // step 20 Z3 = Fp.add(X3, Z3); X3 = Fp.sub(t1, Z3); Z3 = Fp.add(t1, Z3); Y3 = Fp.mul(X3, Z3); t1 = Fp.add(t0, t0); // step 25 t1 = Fp.add(t1, t0); t2 = Fp.mul(a, t2); t4 = Fp.mul(b3, t4); t1 = Fp.add(t1, t2); t2 = Fp.sub(t0, t2); // step 30 t2 = Fp.mul(a, t2); t4 = Fp.add(t4, t2); t0 = Fp.mul(t1, t4); Y3 = Fp.add(Y3, t0); t0 = Fp.mul(t5, t4); // step 35 X3 = Fp.mul(t3, X3); X3 = Fp.sub(X3, t0); t0 = Fp.mul(t3, t1); Z3 = Fp.mul(t5, Z3); Z3 = Fp.add(Z3, t0); // step 40 return new Point(X3, Y3, Z3); } subtract(other) { return this.add(other.negate()); } is0() { return this.equals(Point.ZERO); } wNAF(n) { return wnaf.wNAFCached(this, pointPrecomputes, n, (comp) => { const toInv = Fp.invertBatch(comp.map((p) => p.pz)); return comp.map((p, i) => p.toAffine(toInv[i])).map(Point.fromAffine); }); } /** * Non-constant-time multiplication. Uses double-and-add algorithm. * It's faster, but should only be used when you don't care about * an exposed private key e.g. sig verification, which works over *public* keys. */ multiplyUnsafe(n) { const I = Point.ZERO; if (n === _0n) return I; assertGE(n); // Will throw on 0 if (n === _1n) return this; const { endo } = CURVE; if (!endo) return wnaf.unsafeLadder(this, n); // Apply endomorphism let { k1neg, k1, k2neg, k2 } = endo.splitScalar(n); let k1p = I; let k2p = I; let d = this; while (k1 > _0n || k2 > _0n) { if (k1 & _1n) k1p = k1p.add(d); if (k2 & _1n) k2p = k2p.add(d); d = d.double(); k1 >>= _1n; k2 >>= _1n; } if (k1neg) k1p = k1p.negate(); if (k2neg) k2p = k2p.negate(); k2p = new Point(Fp.mul(k2p.px, endo.beta), k2p.py, k2p.pz); return k1p.add(k2p); } /** * Constant time multiplication. * Uses wNAF method. Windowed method may be 10% faster, * but takes 2x longer to generate and consumes 2x memory. * Uses precomputes when available. * Uses endomorphism for Koblitz curves. * @param scalar by which the point would be multiplied * @returns New point */ multiply(scalar) { assertGE(scalar); let n = scalar; let point, fake; // Fake point is used to const-time mult const { endo } = CURVE; if (endo) { const { k1neg, k1, k2neg, k2 } = endo.splitScalar(n); let { p: k1p, f: f1p } = this.wNAF(k1); let { p: k2p, f: f2p } = this.wNAF(k2); k1p = wnaf.constTimeNegate(k1neg, k1p); k2p = wnaf.constTimeNegate(k2neg, k2p); k2p = new Point(Fp.mul(k2p.px, endo.beta), k2p.py, k2p.pz); point = k1p.add(k2p); fake = f1p.add(f2p); } else { const { p, f } = this.wNAF(n); point = p; fake = f; } // Normalize `z` for both points, but return only real one return Point.normalizeZ([point, fake])[0]; } /** * Efficiently calculate `aP + bQ`. Unsafe, can expose private key, if used incorrectly. * Not using Strauss-Shamir trick: precomputation tables are faster. * The trick could be useful if both P and Q are not G (not in our case). * @returns non-zero affine point */ multiplyAndAddUnsafe(Q, a, b) { const G = Point.BASE; // No Strauss-Shamir trick: we have 10% faster G precomputes const mul = (P, a // Select faster multiply() method ) => (a === _0n || a === _1n || !P.equals(G) ? P.multiplyUnsafe(a) : P.multiply(a)); const sum = mul(this, a).add(mul(Q, b)); return sum.is0() ? undefined : sum; } // Converts Projective point to affine (x, y) coordinates. // Can accept precomputed Z^-1 - for example, from invertBatch. // (x, y, z) ∋ (x=x/z, y=y/z) toAffine(iz) { const { px: x, py: y, pz: z } = this; const is0 = this.is0(); // If invZ was 0, we return zero point. However we still want to execute // all operations, so we replace invZ with a random number, 1. if (iz == null) iz = is0 ? Fp.ONE : Fp.inv(z); const ax = Fp.mul(x, iz); const ay = Fp.mul(y, iz); const zz = Fp.mul(z, iz); if (is0) return { x: Fp.ZERO, y: Fp.ZERO }; if (!Fp.eql(zz, Fp.ONE)) throw new Error('invZ was invalid'); return { x: ax, y: ay }; } isTorsionFree() { const { h: cofactor, isTorsionFree } = CURVE; if (cofactor === _1n) return true; // No subgroups, always torsion-free if (isTorsionFree) return isTorsionFree(Point, this); throw new Error('isTorsionFree() has not been declared for the elliptic curve'); } clearCofactor() { const { h: cofactor, clearCofactor } = CURVE; if (cofactor === _1n) return this; // Fast-path if (clearCofactor) return clearCofactor(Point, this); return this.multiplyUnsafe(CURVE.h); } toRawBytes(isCompressed = true) { this.assertValidity(); return CURVE.toBytes(Point, this, isCompressed); } toHex(isCompressed = true) { return ut.bytesToHex(this.toRawBytes(isCompressed)); } } Point.BASE = new Point(CURVE.Gx, CURVE.Gy, Fp.ONE); Point.ZERO = new Point(Fp.ZERO, Fp.ONE, Fp.ZERO); const _bits = CURVE.nBitLength; const wnaf = wNAF(Point, CURVE.endo ? Math.ceil(_bits / 2) : _bits); return { ProjectivePoint: Point, normPrivateKeyToScalar, weierstrassEquation, isWithinCurveOrder, }; } function validateOpts(curve) { const opts = validateBasic(curve); ut.validateObject(opts, { hash: 'hash', hmac: 'function', randomBytes: 'function', }, { bits2int: 'function', bits2int_modN: 'function', lowS: 'boolean', }); return Object.freeze({ lowS: true, ...opts }); } export function weierstrass(curveDef) { const CURVE = validateOpts(curveDef); const CURVE_ORDER = CURVE.n; const Fp = CURVE.Fp; const compressedLen = Fp.BYTES + 1; // e.g. 33 for 32 const uncompressedLen = 2 * Fp.BYTES + 1; // e.g. 65 for 32 function isValidFieldElement(num) { return _0n < num && num < Fp.ORDER; // 0 is banned since it's not invertible FE } function modN(a) { return mod.mod(a, CURVE_ORDER); } function invN(a) { return mod.invert(a, CURVE_ORDER); } const { ProjectivePoint: Point, normPrivateKeyToScalar, weierstrassEquation, isWithinCurveOrder, } = weierstrassPoints({ ...CURVE, toBytes(c, point, isCompressed) { const a = point.toAffine(); const x = Fp.toBytes(a.x); const cat = ut.concatBytes; if (isCompressed) { return cat(Uint8Array.from([point.hasEvenY() ? 0x02 : 0x03]), x); } else { return cat(Uint8Array.from([0x04]), x, Fp.toBytes(a.y)); } }, fromBytes(bytes) { const len = bytes.length; const head = bytes[0]; const tail = bytes.subarray(1); // this.assertValidity() is done inside of fromHex if (len === compressedLen && (head === 0x02 || head === 0x03)) { const x = ut.bytesToNumberBE(tail); if (!isValidFieldElement(x)) throw new Error('Point is not on curve'); const y2 = weierstrassEquation(x); // y² = x³ + ax + b let y = Fp.sqrt(y2); // y = y² ^ (p+1)/4 const isYOdd = (y & _1n) === _1n; // ECDSA const isHeadOdd = (head & 1) === 1; if (isHeadOdd !== isYOdd) y = Fp.neg(y); return { x, y }; } else if (len === uncompressedLen && head === 0x04) { const x = Fp.fromBytes(tail.subarray(0, Fp.BYTES)); const y = Fp.fromBytes(tail.subarray(Fp.BYTES, 2 * Fp.BYTES)); return { x, y }; } else { throw new Error(`Point of length ${len} was invalid. Expected ${compressedLen} compressed bytes or ${uncompressedLen} uncompressed bytes`); } }, }); const numToNByteStr = (num) => ut.bytesToHex(ut.numberToBytesBE(num, CURVE.nByteLength)); function isBiggerThanHalfOrder(number) { const HALF = CURVE_ORDER >> _1n; return number > HALF; } function normalizeS(s) { return isBiggerThanHalfOrder(s) ? modN(-s) : s; } // slice bytes num const slcNum = (b, from, to) => ut.bytesToNumberBE(b.slice(from, to)); /** * ECDSA signature with its (r, s) properties. Supports DER & compact representations. */ class Signature { constructor(r, s, recovery) { this.r = r; this.s = s; this.recovery = recovery; this.assertValidity(); } // pair (bytes of r, bytes of s) static fromCompact(hex) { const l = CURVE.nByteLength; hex = ensureBytes('compactSignature', hex, l * 2); return new Signature(slcNum(hex, 0, l), slcNum(hex, l, 2 * l)); } // DER encoded ECDSA signature // https://bitcoin.stackexchange.com/questions/57644/what-are-the-parts-of-a-bitcoin-transaction-input-script static fromDER(hex) { const { r, s } = DER.toSig(ensureBytes('DER', hex)); return new Signature(r, s); } assertValidity() { // can use assertGE here if (!isWithinCurveOrder(this.r)) throw new Error('r must be 0 < r < CURVE.n'); if (!isWithinCurveOrder(this.s)) throw new Error('s must be 0 < s < CURVE.n'); } addRecoveryBit(recovery) { return new Signature(this.r, this.s, recovery); } recoverPublicKey(msgHash) { const { r, s, recovery: rec } = this; const h = bits2int_modN(ensureBytes('msgHash', msgHash)); // Truncate hash if (rec == null || ![0, 1, 2, 3].includes(rec)) throw new Error('recovery id invalid'); const radj = rec === 2 || rec === 3 ? r + CURVE.n : r; if (radj >= Fp.ORDER) throw new Error('recovery id 2 or 3 invalid'); const prefix = (rec & 1) === 0 ? '02' : '03'; const R = Point.fromHex(prefix + numToNByteStr(radj)); const ir = invN(radj); // r^-1 const u1 = modN(-h * ir); // -hr^-1 const u2 = modN(s * ir); // sr^-1 const Q = Point.BASE.multiplyAndAddUnsafe(R, u1, u2); // (sr^-1)R-(hr^-1)G = -(hr^-1)G + (sr^-1) if (!Q) throw new Error('point at infinify'); // unsafe is fine: no priv data leaked Q.assertValidity(); return Q; } // Signatures should be low-s, to prevent malleability. hasHighS() { return isBiggerThanHalfOrder(this.s); } normalizeS() { return this.hasHighS() ? new Signature(this.r, modN(-this.s), this.recovery) : this; } // DER-encoded toDERRawBytes() { return ut.hexToBytes(this.toDERHex()); } toDERHex() { return DER.hexFromSig({ r: this.r, s: this.s }); } // padded bytes of r, then padded bytes of s toCompactRawBytes() { return ut.hexToBytes(this.toCompactHex()); } toCompactHex() { return numToNByteStr(this.r) + numToNByteStr(this.s); } } const utils = { isValidPrivateKey(privateKey) { try { normPrivateKeyToScalar(privateKey); return true; } catch (error) { return false; } }, normPrivateKeyToScalar: normPrivateKeyToScalar, /** * Produces cryptographically secure private key from random of size (nBitLength+64) * as per FIPS 186 B.4.1 with modulo bias being neglible. */ randomPrivateKey: () => { const rand = CURVE.randomBytes(Fp.BYTES + 8); const num = mod.hashToPrivateScalar(rand, CURVE_ORDER); return ut.numberToBytesBE(num, CURVE.nByteLength); }, /** * Creates precompute table for an arbitrary EC point. Makes point "cached". * Allows to massively speed-up `point.multiply(scalar)`. * @returns cached point * @example * const fast = utils.precompute(8, ProjectivePoint.fromHex(someonesPubKey)); * fast.multiply(privKey); // much faster ECDH now */ precompute(windowSize = 8, point = Point.BASE) { point._setWindowSize(windowSize); point.multiply(BigInt(3)); // 3 is arbitrary, just need any number here return point; }, }; /** * Computes public key for a private key. Checks for validity of the private key. * @param privateKey private key * @param isCompressed whether to return compact (default), or full key * @returns Public key, full when isCompressed=false; short when isCompressed=true */ function getPublicKey(privateKey, isCompressed = true) { return Point.fromPrivateKey(privateKey).toRawBytes(isCompressed); } /** * Quick and dirty check for item being public key. Does not validate hex, or being on-curve. */ function isProbPub(item) { const arr = item instanceof Uint8Array; const str = typeof item === 'string'; const len = (arr || str) && item.length; if (arr) return len === compressedLen || len === uncompressedLen; if (str) return len === 2 * compressedLen || len === 2 * uncompressedLen; if (item instanceof Point) return true; return false; } /** * ECDH (Elliptic Curve Diffie Hellman). * Computes shared public key from private key and public key. * Checks: 1) private key validity 2) shared key is on-curve. * Does NOT hash the result. * @param privateA private key * @param publicB different public key * @param isCompressed whether to return compact (default), or full key * @returns shared public key */ function getSharedSecret(privateA, publicB, isCompressed = true) { if (isProbPub(privateA)) throw new Error('first arg must be private key'); if (!isProbPub(publicB)) throw new Error('second arg must be public key'); const b = Point.fromHex(publicB); // check for being on-curve return b.multiply(normPrivateKeyToScalar(privateA)).toRawBytes(isCompressed); } // RFC6979: ensure ECDSA msg is X bytes and < N. RFC suggests optional truncating via bits2octets. // FIPS 186-4 4.6 suggests the leftmost min(nBitLen, outLen) bits, which matches bits2int. // bits2int can produce res>N, we can do mod(res, N) since the bitLen is the same. // int2octets can't be used; pads small msgs with 0: unacceptatble for trunc as per RFC vectors const bits2int = CURVE.bits2int || function (bytes) { // For curves with nBitLength % 8 !== 0: bits2octets(bits2octets(m)) !== bits2octets(m) // for some cases, since bytes.length * 8 is not actual bitLength. const num = ut.bytesToNumberBE(bytes); // check for == u8 done here const delta = bytes.length * 8 - CURVE.nBitLength; // truncate to nBitLength leftmost bits return delta > 0 ? num >> BigInt(delta) : num; }; const bits2int_modN = CURVE.bits2int_modN || function (bytes) { return modN(bits2int(bytes)); // can't use bytesToNumberBE here }; // NOTE: pads output with zero as per spec const ORDER_MASK = ut.bitMask(CURVE.nBitLength); /** * Converts to bytes. Checks if num in `[0..ORDER_MASK-1]` e.g.: `[0..2^256-1]`. */ function int2octets(num) { if (typeof num !== 'bigint') throw new Error('bigint expected'); if (!(_0n <= num && num < ORDER_MASK)) throw new Error(`bigint expected < 2^${CURVE.nBitLength}`); // works with order, can have different size than numToField! return ut.numberToBytesBE(num, CURVE.nByteLength); } // Steps A, D of RFC6979 3.2 // Creates RFC6979 seed; converts msg/privKey to numbers. // Used only in sign, not in verify. // NOTE: we cannot assume here that msgHash has same amount of bytes as curve order, this will be wrong at least for P521. // Also it can be bigger for P224 + SHA256 function prepSig(msgHash, privateKey, opts = defaultSigOpts) { if (['recovered', 'canonical'].some((k) => k in opts)) throw new Error('sign() legacy options not supported'); const { hash, randomBytes } = CURVE; let { lowS, prehash, extraEntropy: ent } = opts; // generates low-s sigs by default if (lowS == null) lowS = true; // RFC6979 3.2: we skip step A, because we already provide hash msgHash = ensureBytes('msgHash', msgHash); if (prehash) msgHash = ensureBytes('prehashed msgHash', hash(msgHash)); // We can't later call bits2octets, since nested bits2int is broken for curves // with nBitLength % 8 !== 0. Because of that, we unwrap it here as int2octets call. // const bits2octets = (bits) => int2octets(bits2int_modN(bits)) const h1int = bits2int_modN(msgHash); const d = normPrivateKeyToScalar(privateKey); // validate private key, convert to bigint const seedArgs = [int2octets(d), int2octets(h1int)]; // extraEntropy. RFC6979 3.6: additional k' (optional). if (ent != null) { // K = HMAC_K(V || 0x00 || int2octets(x) || bits2octets(h1) || k') const e = ent === true ? randomBytes(Fp.BYTES) : ent; // generate random bytes OR pass as-is seedArgs.push(ensureBytes('extraEntropy', e, Fp.BYTES)); // check for being of size BYTES } const seed = ut.concatBytes(...seedArgs); // Step D of RFC6979 3.2 const m = h1int; // NOTE: no need to call bits2int second time here, it is inside truncateHash! // Converts signature params into point w r/s, checks result for validity. function k2sig(kBytes) { // RFC 6979 Section 3.2, step 3: k = bits2int(T) const k = bits2int(kBytes); // Cannot use fields methods, since it is group element if (!isWithinCurveOrder(k)) return; // Important: all mod() calls here must be done over N const ik = invN(k); // k^-1 mod n const q = Point.BASE.multiply(k).toAffine(); // q = Gk const r = modN(q.x); // r = q.x mod n if (r === _0n) return; // Can use scalar blinding b^-1(bm + bdr) where b ∈ [1,q−1] according to // https://tches.iacr.org/index.php/TCHES/article/view/7337/6509. We've decided against it: // a) dependency on CSPRNG b) 15% slowdown c) doesn't really help since bigints are not CT const s = modN(ik * modN(m + r * d)); // Not using blinding here if (s === _0n) return; let recovery = (q.x === r ? 0 : 2) | Number(q.y & _1n); // recovery bit (2 or 3, when q.x > n) let normS = s; if (lowS && isBiggerThanHalfOrder(s)) { normS = normalizeS(s); // if lowS was passed, ensure s is always recovery ^= 1; // // in the bottom half of N } return new Signature(r, normS, recovery); // use normS, not s } return { seed, k2sig }; } const defaultSigOpts = { lowS: CURVE.lowS, prehash: false }; const defaultVerOpts = { lowS: CURVE.lowS, prehash: false }; /** * Signs message hash (not message: you need to hash it by yourself). * ``` * sign(m, d, k) where * (x, y) = G × k * r = x mod n * s = (m + dr)/k mod n * ``` * @param opts `lowS, extraEntropy, prehash` */ function sign(msgHash, privKey, opts = defaultSigOpts) { const { seed, k2sig } = prepSig(msgHash, privKey, opts); // Steps A, D of RFC6979 3.2. const drbg = ut.createHmacDrbg(CURVE.hash.outputLen, CURVE.nByteLength, CURVE.hmac); return drbg(seed, k2sig); // Steps B, C, D, E, F, G } // Enable precomputes. Slows down first publicKey computation by 20ms. Point.BASE._setWindowSize(8); // utils.precompute(8, ProjectivePoint.BASE) /** * Verifies a signature against message hash and public key. * Rejects lowS signatures by default: to override, * specify option `{lowS: false}`. Implements section 4.1.4 from https://www.secg.org/sec1-v2.pdf: * * ``` * verify(r, s, h, P) where * U1 = hs^-1 mod n * U2 = rs^-1 mod n * R = U1⋅G - U2⋅P * mod(R.x, n) == r * ``` */ function verify(signature, msgHash, publicKey, opts = defaultVerOpts) { const sg = signature; msgHash = ensureBytes('msgHash', msgHash); publicKey = ensureBytes('publicKey', publicKey); if ('strict' in opts) throw new Error('options.strict was renamed to lowS'); const { lowS, prehash } = opts; let _sig = undefined; let P; try { if (typeof sg === 'string' || sg instanceof Uint8Array) { // Signature can be represented in 2 ways: compact (2*nByteLength) & DER (variable-length). // Since DER can also be 2*nByteLength bytes, we check for it first. try { _sig = Signature.fromDER(sg); } catch (derError) { if (!(derError instanceof DER.Err)) throw derError; _sig = Signature.fromCompact(sg); } } else if (typeof sg === 'object' && typeof sg.r === 'bigint' && typeof sg.s === 'bigint') { const { r, s } = sg; _sig = new Signature(r, s); } else { throw new Error('PARSE'); } P = Point.fromHex(publicKey); } catch (error) { if (error.message === 'PARSE') throw new Error(`signature must be Signature instance, Uint8Array or hex string`); return false; } if (lowS && _sig.hasHighS()) return false; if (prehash) msgHash = CURVE.hash(msgHash); const { r, s } = _sig; const h = bits2int_modN(msgHash); // Cannot use fields methods, since it is group element const is = invN(s); // s^-1 const u1 = modN(h * is); // u1 = hs^-1 mod n const u2 = modN(r * is); // u2 = rs^-1 mod n const R = Point.BASE.multiplyAndAddUnsafe(P, u1, u2)?.toAffine(); // R = u1⋅G + u2⋅P if (!R) return false; const v = modN(R.x); return v === r; } return { CURVE, getPublicKey, getSharedSecret, sign, verify, ProjectivePoint: Point, Signature, utils, }; } // Implementation of the Shallue and van de Woestijne method for any Weierstrass curve // TODO: check if there is a way to merge this with uvRatio in Edwards && move to modular? // b = True and y = sqrt(u / v) if (u / v) is square in F, and // b = False and y = sqrt(Z * (u / v)) otherwise. export function SWUFpSqrtRatio(Fp, Z) { // Generic implementation const q = Fp.ORDER; let l = 0n; for (let o = q - 1n; o % 2n === 0n; o /= 2n) l += 1n; const c1 = l; // 1. c1, the largest integer such that 2^c1 divides q - 1. const c2 = (q - 1n) / 2n ** c1; // 2. c2 = (q - 1) / (2^c1) # Integer arithmetic const c3 = (c2 - 1n) / 2n; // 3. c3 = (c2 - 1) / 2 # Integer arithmetic const c4 = 2n ** c1 - 1n; // 4. c4 = 2^c1 - 1 # Integer arithmetic const c5 = 2n ** (c1 - 1n); // 5. c5 = 2^(c1 - 1) # Integer arithmetic const c6 = Fp.pow(Z, c2); // 6. c6 = Z^c2 const c7 = Fp.pow(Z, (c2 + 1n) / 2n); // 7. c7 = Z^((c2 + 1) / 2) let sqrtRatio = (u, v) => { let tv1 = c6; // 1. tv1 = c6 let tv2 = Fp.pow(v, c4); // 2. tv2 = v^c4 let tv3 = Fp.sqr(tv2); // 3. tv3 = tv2^2 tv3 = Fp.mul(tv3, v); // 4. tv3 = tv3 * v let tv5 = Fp.mul(u, tv3); // 5. tv5 = u * tv3 tv5 = Fp.pow(tv5, c3); // 6. tv5 = tv5^c3 tv5 = Fp.mul(tv5, tv2); // 7. tv5 = tv5 * tv2 tv2 = Fp.mul(tv5, v); // 8. tv2 = tv5 * v tv3 = Fp.mul(tv5, u); // 9. tv3 = tv5 * u let tv4 = Fp.mul(tv3, tv2); // 10. tv4 = tv3 * tv2 tv5 = Fp.pow(tv4, c5); // 11. tv5 = tv4^c5 let isQR = Fp.eql(tv5, Fp.ONE); // 12. isQR = tv5 == 1 tv2 = Fp.mul(tv3, c7); // 13. tv2 = tv3 * c7 tv5 = Fp.mul(tv4, tv1); // 14. tv5 = tv4 * tv1 tv3 = Fp.cmov(tv2, tv3, isQR); // 15. tv3 = CMOV(tv2, tv3, isQR) tv4 = Fp.cmov(tv5, tv4, isQR); // 16. tv4 = CMOV(tv5, tv4, isQR) // 17. for i in (c1, c1 - 1, ..., 2): for (let i = c1; i > 1; i--) { let tv5 = 2n ** (i - 2n); // 18. tv5 = i - 2; 19. tv5 = 2^tv5 let tvv5 = Fp.pow(tv4, tv5); // 20. tv5 = tv4^tv5 const e1 = Fp.eql(tvv5, Fp.ONE); // 21. e1 = tv5 == 1 tv2 = Fp.mul(tv3, tv1); // 22. tv2 = tv3 * tv1 tv1 = Fp.mul(tv1, tv1); // 23. tv1 = tv1 * tv1 tvv5 = Fp.mul(tv4, tv1); // 24. tv5 = tv4 * tv1 tv3 = Fp.cmov(tv2, tv3, e1); // 25. tv3 = CMOV(tv2, tv3, e1) tv4 = Fp.cmov(tvv5, tv4, e1); // 26. tv4 = CMOV(tv5, tv4, e1) } return { isValid: isQR, value: tv3 }; }; if (Fp.ORDER % 4n === 3n) { // sqrt_ratio_3mod4(u, v) const c1 = (Fp.ORDER - 3n) / 4n; // 1. c1 = (q - 3) / 4 # Integer arithmetic const c2 = Fp.sqrt(Fp.neg(Z)); // 2. c2 = sqrt(-Z) sqrtRatio = (u, v) => { let tv1 = Fp.sqr(v); // 1. tv1 = v^2 const tv2 = Fp.mul(u, v); // 2. tv2 = u * v tv1 = Fp.mul(tv1, tv2); // 3. tv1 = tv1 * tv2 let y1 = Fp.pow(tv1, c1); // 4. y1 = tv1^c1 y1 = Fp.mul(y1, tv2); // 5. y1 = y1 * tv2 const y2 = Fp.mul(y1, c2); // 6. y2 = y1 * c2 const tv3 = Fp.mul(Fp.sqr(y1), v); // 7. tv3 = y1^2; 8. tv3 = tv3 * v const isQR = Fp.eql(tv3, u); // 9. isQR = tv3 == u let y = Fp.cmov(y2, y1, isQR); // 10. y = CMOV(y2, y1, isQR) return { isValid: isQR, value: y }; // 11. return (isQR, y) isQR ? y : y*c2 }; } // No curves uses that // if (Fp.ORDER % 8n === 5n) // sqrt_ratio_5mod8 return sqrtRatio; } // From draft-irtf-cfrg-hash-to-curve-16 export function mapToCurveSimpleSWU(Fp, opts) { mod.validateField(Fp); if (!Fp.isValid(opts.A) || !Fp.isValid(opts.B) || !Fp.isValid(opts.Z)) throw new Error('mapToCurveSimpleSWU: invalid opts'); const sqrtRatio = SWUFpSqrtRatio(Fp, opts.Z); if (!Fp.isOdd) throw new Error('Fp.isOdd is not implemented!'); // Input: u, an element of F. // Output: (x, y), a point on E. return (u) => { // prettier-ignore let tv1, tv2, tv3, tv4, tv5, tv6, x, y; tv1 = Fp.sqr(u); // 1. tv1 = u^2 tv1 = Fp.mul(tv1, opts.Z); // 2. tv1 = Z * tv1 tv2 = Fp.sqr(tv1); // 3. tv2 = tv1^2 tv2 = Fp.add(tv2, tv1); // 4. tv2 = tv2 + tv1 tv3 = Fp.add(tv2, Fp.ONE); // 5. tv3 = tv2 + 1 tv3 = Fp.mul(tv3, opts.B); // 6. tv3 = B * tv3 tv4 = Fp.cmov(opts.Z, Fp.neg(tv2), !Fp.eql(tv2, Fp.ZERO)); // 7. tv4 = CMOV(Z, -tv2, tv2 != 0) tv4 = Fp.mul(tv4, opts.A); // 8. tv4 = A * tv4 tv2 = Fp.sqr(tv3); // 9. tv2 = tv3^2 tv6 = Fp.sqr(tv4); // 10. tv6 = tv4^2 tv5 = Fp.mul(tv6, opts.A); // 11. tv5 = A * tv6 tv2 = Fp.add(tv2, tv5); // 12. tv2 = tv2 + tv5 tv2 = Fp.mul(tv2, tv3); // 13. tv2 = tv2 * tv3 tv6 = Fp.mul(tv6, tv4); // 14. tv6 = tv6 * tv4 tv5 = Fp.mul(tv6, opts.B); // 15. tv5 = B * tv6 tv2 = Fp.add(tv2, tv5); // 16. tv2 = tv2 + tv5 x = Fp.mul(tv1, tv3); // 17. x = tv1 * tv3 const { isValid, value } = sqrtRatio(tv2, tv6); // 18. (is_gx1_square, y1) = sqrt_ratio(tv2, tv6) y = Fp.mul(tv1, u); // 19. y = tv1 * u -> Z * u^3 * y1 y = Fp.mul(y, value); // 20. y = y * y1 x = Fp.cmov(x, tv3, isValid); // 21. x = CMOV(x, tv3, is_gx1_square) y = Fp.cmov(y, value, isValid); // 22. y = CMOV(y, y1, is_gx1_square) const e1 = Fp.isOdd(u) === Fp.isOdd(y); // 23. e1 = sgn0(u) == sgn0(y) y = Fp.cmov(Fp.neg(y), y, e1); // 24. y = CMOV(-y, y, e1) x = Fp.div(x, tv4); // 25. x = x / tv4 return { x, y }; }; }