@proton/ccxt
Version:
A JavaScript / TypeScript / Python / C# / PHP cryptocurrency trading library with support for 130+ exchanges
1,757 lines (1,755 loc) • 50 kB
JavaScript
// ----------------------------------------------------------------------------
// PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN:
// https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code
// EDIT THE CORRESPONDENT .ts FILE INSTEAD
// Copyright (c) 2005 Tom Wu
// All Rights Reserved.
// See "LICENSE" for details.
// Basic JavaScript BN library - subset useful for RSA encryption.
import { cbit, int2char, lbit, op_and, op_andnot, op_or, op_xor } from "./util.js";
// Bits per digit
let dbits;
// JavaScript engine analysis
const canary = 0xdeadbeefcafe;
const j_lm = ((canary & 0xffffff) == 0xefcafe);
//#region
const lowprimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997];
const lplim = (1 << 26) / lowprimes[lowprimes.length - 1];
//#endregion
// (public) Constructor
/**
* @type Class
*/
export class BigInteger {
constructor(a, b, c) {
if (a != null) {
if ("number" == typeof a) {
this.fromNumber(a, b, c);
}
else if (b == null && "string" != typeof a) {
this.fromString(a, 256);
}
else {
this.fromString(a, b);
}
}
}
//#region PUBLIC
// BigInteger.prototype.toString = bnToString;
// (public) return string representation in given radix
toString(b) {
if (this.s < 0) {
return "-" + this.negate().toString(b);
}
let k;
if (b == 16) {
k = 4;
}
else if (b == 8) {
k = 3;
}
else if (b == 2) {
k = 1;
}
else if (b == 32) {
k = 5;
}
else if (b == 4) {
k = 2;
}
else {
return this.toRadix(b);
}
const km = (1 << k) - 1;
let d;
let m = false;
let r = "";
let i = this.t;
let p = this.DB - (i * this.DB) % k;
if (i-- > 0) {
if (p < this.DB && (d = this[i] >> p) > 0) {
m = true;
r = int2char(d);
}
while (i >= 0) {
if (p < k) {
d = (this[i] & ((1 << p) - 1)) << (k - p);
d |= this[--i] >> (p += this.DB - k);
}
else {
d = (this[i] >> (p -= k)) & km;
if (p <= 0) {
p += this.DB;
--i;
}
}
if (d > 0) {
m = true;
}
if (m) {
r += int2char(d);
}
}
}
return m ? r : "0";
}
// BigInteger.prototype.negate = bnNegate;
// (public) -this
negate() {
const r = nbi();
BigInteger.ZERO.subTo(this, r);
return r;
}
// BigInteger.prototype.abs = bnAbs;
// (public) |this|
abs() {
return (this.s < 0) ? this.negate() : this;
}
// BigInteger.prototype.compareTo = bnCompareTo;
// (public) return + if this > a, - if this < a, 0 if equal
compareTo(a) {
let r = this.s - a.s;
if (r != 0) {
return r;
}
let i = this.t;
r = i - a.t;
if (r != 0) {
return (this.s < 0) ? -r : r;
}
while (--i >= 0) {
if ((r = this[i] - a[i]) != 0) {
return r;
}
}
return 0;
}
// BigInteger.prototype.bitLength = bnBitLength;
// (public) return the number of bits in "this"
bitLength() {
if (this.t <= 0) {
return 0;
}
return this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.DM));
}
// BigInteger.prototype.mod = bnMod;
// (public) this mod a
mod(a) {
const r = nbi();
this.abs().divRemTo(a, null, r);
if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) {
a.subTo(r, r);
}
return r;
}
// BigInteger.prototype.modPowInt = bnModPowInt;
// (public) this^e % m, 0 <= e < 2^32
modPowInt(e, m) {
let z;
if (e < 256 || m.isEven()) {
z = new Classic(m);
}
else {
z = new Montgomery(m);
}
return this.exp(e, z);
}
// BigInteger.prototype.clone = bnClone;
// (public)
clone() {
const r = nbi();
this.copyTo(r);
return r;
}
// BigInteger.prototype.intValue = bnIntValue;
// (public) return value as integer
intValue() {
if (this.s < 0) {
if (this.t == 1) {
return this[0] - this.DV;
}
else if (this.t == 0) {
return -1;
}
}
else if (this.t == 1) {
return this[0];
}
else if (this.t == 0) {
return 0;
}
// assumes 16 < DB < 32
return ((this[1] & ((1 << (32 - this.DB)) - 1)) << this.DB) | this[0];
}
// BigInteger.prototype.byteValue = bnByteValue;
// (public) return value as byte
byteValue() {
return (this.t == 0) ? this.s : (this[0] << 24) >> 24;
}
// BigInteger.prototype.shortValue = bnShortValue;
// (public) return value as short (assumes DB>=16)
shortValue() {
return (this.t == 0) ? this.s : (this[0] << 16) >> 16;
}
// BigInteger.prototype.signum = bnSigNum;
// (public) 0 if this == 0, 1 if this > 0
signum() {
if (this.s < 0) {
return -1;
}
else if (this.t <= 0 || (this.t == 1 && this[0] <= 0)) {
return 0;
}
else {
return 1;
}
}
// BigInteger.prototype.toByteArray = bnToByteArray;
// (public) convert to bigendian byte array
toByteArray() {
let i = this.t;
const r = [];
r[0] = this.s;
let p = this.DB - (i * this.DB) % 8;
let d;
let k = 0;
if (i-- > 0) {
if (p < this.DB && (d = this[i] >> p) != (this.s & this.DM) >> p) {
r[k++] = d | (this.s << (this.DB - p));
}
while (i >= 0) {
if (p < 8) {
d = (this[i] & ((1 << p) - 1)) << (8 - p);
d |= this[--i] >> (p += this.DB - 8);
}
else {
d = (this[i] >> (p -= 8)) & 0xff;
if (p <= 0) {
p += this.DB;
--i;
}
}
if ((d & 0x80) != 0) {
d |= -256;
}
if (k == 0 && (this.s & 0x80) != (d & 0x80)) {
++k;
}
if (k > 0 || d != this.s) {
r[k++] = d;
}
}
}
return r;
}
// BigInteger.prototype.equals = bnEquals;
equals(a) {
return (this.compareTo(a) == 0);
}
// BigInteger.prototype.min = bnMin;
min(a) {
return (this.compareTo(a) < 0) ? this : a;
}
// BigInteger.prototype.max = bnMax;
max(a) {
return (this.compareTo(a) > 0) ? this : a;
}
// BigInteger.prototype.and = bnAnd;
and(a) {
const r = nbi();
this.bitwiseTo(a, op_and, r);
return r;
}
// BigInteger.prototype.or = bnOr;
or(a) {
const r = nbi();
this.bitwiseTo(a, op_or, r);
return r;
}
// BigInteger.prototype.xor = bnXor;
xor(a) {
const r = nbi();
this.bitwiseTo(a, op_xor, r);
return r;
}
// BigInteger.prototype.andNot = bnAndNot;
andNot(a) {
const r = nbi();
this.bitwiseTo(a, op_andnot, r);
return r;
}
// BigInteger.prototype.not = bnNot;
// (public) ~this
not() {
const r = nbi();
for (let i = 0; i < this.t; ++i) {
r[i] = this.DM & ~this[i];
}
r.t = this.t;
r.s = ~this.s;
return r;
}
// BigInteger.prototype.shiftLeft = bnShiftLeft;
// (public) this << n
shiftLeft(n) {
const r = nbi();
if (n < 0) {
this.rShiftTo(-n, r);
}
else {
this.lShiftTo(n, r);
}
return r;
}
// BigInteger.prototype.shiftRight = bnShiftRight;
// (public) this >> n
shiftRight(n) {
const r = nbi();
if (n < 0) {
this.lShiftTo(-n, r);
}
else {
this.rShiftTo(n, r);
}
return r;
}
// BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
// (public) returns index of lowest 1-bit (or -1 if none)
getLowestSetBit() {
for (let i = 0; i < this.t; ++i) {
if (this[i] != 0) {
return i * this.DB + lbit(this[i]);
}
}
if (this.s < 0) {
return this.t * this.DB;
}
return -1;
}
// BigInteger.prototype.bitCount = bnBitCount;
// (public) return number of set bits
bitCount() {
let r = 0;
const x = this.s & this.DM;
for (let i = 0; i < this.t; ++i) {
r += cbit(this[i] ^ x);
}
return r;
}
// BigInteger.prototype.testBit = bnTestBit;
// (public) true iff nth bit is set
testBit(n) {
const j = Math.floor(n / this.DB);
if (j >= this.t) {
return (this.s != 0);
}
return ((this[j] & (1 << (n % this.DB))) != 0);
}
// BigInteger.prototype.setBit = bnSetBit;
// (public) this | (1<<n)
setBit(n) {
return this.changeBit(n, op_or);
}
// BigInteger.prototype.clearBit = bnClearBit;
// (public) this & ~(1<<n)
clearBit(n) {
return this.changeBit(n, op_andnot);
}
// BigInteger.prototype.flipBit = bnFlipBit;
// (public) this ^ (1<<n)
flipBit(n) {
return this.changeBit(n, op_xor);
}
// BigInteger.prototype.add = bnAdd;
// (public) this + a
add(a) {
const r = nbi();
this.addTo(a, r);
return r;
}
// BigInteger.prototype.subtract = bnSubtract;
// (public) this - a
subtract(a) {
const r = nbi();
this.subTo(a, r);
return r;
}
// BigInteger.prototype.multiply = bnMultiply;
// (public) this * a
multiply(a) {
const r = nbi();
this.multiplyTo(a, r);
return r;
}
// BigInteger.prototype.divide = bnDivide;
// (public) this / a
divide(a) {
const r = nbi();
this.divRemTo(a, r, null);
return r;
}
// BigInteger.prototype.remainder = bnRemainder;
// (public) this % a
remainder(a) {
const r = nbi();
this.divRemTo(a, null, r);
return r;
}
// BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
// (public) [this/a,this%a]
divideAndRemainder(a) {
const q = nbi();
const r = nbi();
this.divRemTo(a, q, r);
return [q, r];
}
// BigInteger.prototype.modPow = bnModPow;
// (public) this^e % m (HAC 14.85)
modPow(e, m) {
let i = e.bitLength();
let k;
let r = nbv(1);
let z;
if (i <= 0) {
return r;
}
else if (i < 18) {
k = 1;
}
else if (i < 48) {
k = 3;
}
else if (i < 144) {
k = 4;
}
else if (i < 768) {
k = 5;
}
else {
k = 6;
}
if (i < 8) {
z = new Classic(m);
}
else if (m.isEven()) {
z = new Barrett(m);
}
else {
z = new Montgomery(m);
}
// precomputation
const g = [];
let n = 3;
const k1 = k - 1;
const km = (1 << k) - 1;
g[1] = z.convert(this);
if (k > 1) {
const g2 = nbi();
z.sqrTo(g[1], g2);
while (n <= km) {
g[n] = nbi();
z.mulTo(g2, g[n - 2], g[n]);
n += 2;
}
}
let j = e.t - 1;
let w;
let is1 = true;
let r2 = nbi();
let t;
i = nbits(e[j]) - 1;
while (j >= 0) {
if (i >= k1) {
w = (e[j] >> (i - k1)) & km;
}
else {
w = (e[j] & ((1 << (i + 1)) - 1)) << (k1 - i);
if (j > 0) {
w |= e[j - 1] >> (this.DB + i - k1);
}
}
n = k;
while ((w & 1) == 0) {
w >>= 1;
--n;
}
if ((i -= n) < 0) {
i += this.DB;
--j;
}
if (is1) { // ret == 1, don't bother squaring or multiplying it
g[w].copyTo(r);
is1 = false;
}
else {
while (n > 1) {
z.sqrTo(r, r2);
z.sqrTo(r2, r);
n -= 2;
}
if (n > 0) {
z.sqrTo(r, r2);
}
else {
t = r;
r = r2;
r2 = t;
}
z.mulTo(r2, g[w], r);
}
while (j >= 0 && (e[j] & (1 << i)) == 0) {
z.sqrTo(r, r2);
t = r;
r = r2;
r2 = t;
if (--i < 0) {
i = this.DB - 1;
--j;
}
}
}
return z.revert(r);
}
// BigInteger.prototype.modInverse = bnModInverse;
// (public) 1/this % m (HAC 14.61)
modInverse(m) {
const ac = m.isEven();
if ((this.isEven() && ac) || m.signum() == 0) {
return BigInteger.ZERO;
}
const u = m.clone();
const v = this.clone();
const a = nbv(1);
const b = nbv(0);
const c = nbv(0);
const d = nbv(1);
while (u.signum() != 0) {
while (u.isEven()) {
u.rShiftTo(1, u);
if (ac) {
if (!a.isEven() || !b.isEven()) {
a.addTo(this, a);
b.subTo(m, b);
}
a.rShiftTo(1, a);
}
else if (!b.isEven()) {
b.subTo(m, b);
}
b.rShiftTo(1, b);
}
while (v.isEven()) {
v.rShiftTo(1, v);
if (ac) {
if (!c.isEven() || !d.isEven()) {
c.addTo(this, c);
d.subTo(m, d);
}
c.rShiftTo(1, c);
}
else if (!d.isEven()) {
d.subTo(m, d);
}
d.rShiftTo(1, d);
}
if (u.compareTo(v) >= 0) {
u.subTo(v, u);
if (ac) {
a.subTo(c, a);
}
b.subTo(d, b);
}
else {
v.subTo(u, v);
if (ac) {
c.subTo(a, c);
}
d.subTo(b, d);
}
}
if (v.compareTo(BigInteger.ONE) != 0) {
return BigInteger.ZERO;
}
if (d.compareTo(m) >= 0) {
return d.subtract(m);
}
if (d.signum() < 0) {
d.addTo(m, d);
}
else {
return d;
}
if (d.signum() < 0) {
return d.add(m);
}
else {
return d;
}
}
// BigInteger.prototype.pow = bnPow;
// (public) this^e
pow(e) {
return this.exp(e, new NullExp());
}
// BigInteger.prototype.gcd = bnGCD;
// (public) gcd(this,a) (HAC 14.54)
gcd(a) {
let x = (this.s < 0) ? this.negate() : this.clone();
let y = (a.s < 0) ? a.negate() : a.clone();
if (x.compareTo(y) < 0) {
const t = x;
x = y;
y = t;
}
let i = x.getLowestSetBit();
let g = y.getLowestSetBit();
if (g < 0) {
return x;
}
if (i < g) {
g = i;
}
if (g > 0) {
x.rShiftTo(g, x);
y.rShiftTo(g, y);
}
while (x.signum() > 0) {
if ((i = x.getLowestSetBit()) > 0) {
x.rShiftTo(i, x);
}
if ((i = y.getLowestSetBit()) > 0) {
y.rShiftTo(i, y);
}
if (x.compareTo(y) >= 0) {
x.subTo(y, x);
x.rShiftTo(1, x);
}
else {
y.subTo(x, y);
y.rShiftTo(1, y);
}
}
if (g > 0) {
y.lShiftTo(g, y);
}
return y;
}
// BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
// (public) test primality with certainty >= 1-.5^t
isProbablePrime(t) {
let i;
const x = this.abs();
if (x.t == 1 && x[0] <= lowprimes[lowprimes.length - 1]) {
for (i = 0; i < lowprimes.length; ++i) {
if (x[0] == lowprimes[i]) {
return true;
}
}
return false;
}
if (x.isEven()) {
return false;
}
i = 1;
while (i < lowprimes.length) {
let m = lowprimes[i];
let j = i + 1;
while (j < lowprimes.length && m < lplim) {
m *= lowprimes[j++];
}
m = x.modInt(m);
while (i < j) {
if (m % lowprimes[i++] == 0) {
return false;
}
}
}
return x.millerRabin(t);
}
//#endregion PUBLIC
//#region PROTECTED
// BigInteger.prototype.copyTo = bnpCopyTo;
// (protected) copy this to r
copyTo(r) {
for (let i = this.t - 1; i >= 0; --i) {
r[i] = this[i];
}
r.t = this.t;
r.s = this.s;
}
// BigInteger.prototype.fromInt = bnpFromInt;
// (protected) set from integer value x, -DV <= x < DV
fromInt(x) {
this.t = 1;
this.s = (x < 0) ? -1 : 0;
if (x > 0) {
this[0] = x;
}
else if (x < -1) {
this[0] = x + this.DV;
}
else {
this.t = 0;
}
}
// BigInteger.prototype.fromString = bnpFromString;
// (protected) set from string and radix
fromString(s, b) {
let k;
if (b == 16) {
k = 4;
}
else if (b == 8) {
k = 3;
}
else if (b == 256) {
k = 8;
/* byte array */
}
else if (b == 2) {
k = 1;
}
else if (b == 32) {
k = 5;
}
else if (b == 4) {
k = 2;
}
else {
this.fromRadix(s, b);
return;
}
this.t = 0;
this.s = 0;
let i = s.length;
let mi = false;
let sh = 0;
while (--i >= 0) {
const x = (k == 8) ? (+s[i]) & 0xff : intAt(s, i);
if (x < 0) {
if (s.charAt(i) == "-") {
mi = true;
}
continue;
}
mi = false;
if (sh == 0) {
this[this.t++] = x;
}
else if (sh + k > this.DB) {
this[this.t - 1] |= (x & ((1 << (this.DB - sh)) - 1)) << sh;
this[this.t++] = (x >> (this.DB - sh));
}
else {
this[this.t - 1] |= x << sh;
}
sh += k;
if (sh >= this.DB) {
sh -= this.DB;
}
}
if (k == 8 && ((+s[0]) & 0x80) != 0) {
this.s = -1;
if (sh > 0) {
this[this.t - 1] |= ((1 << (this.DB - sh)) - 1) << sh;
}
}
this.clamp();
if (mi) {
BigInteger.ZERO.subTo(this, this);
}
}
// BigInteger.prototype.clamp = bnpClamp;
// (protected) clamp off excess high words
clamp() {
const c = this.s & this.DM;
while (this.t > 0 && this[this.t - 1] == c) {
--this.t;
}
}
// BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
// (protected) r = this << n*DB
dlShiftTo(n, r) {
let i;
for (i = this.t - 1; i >= 0; --i) {
r[i + n] = this[i];
}
for (i = n - 1; i >= 0; --i) {
r[i] = 0;
}
r.t = this.t + n;
r.s = this.s;
}
// BigInteger.prototype.drShiftTo = bnpDRShiftTo;
// (protected) r = this >> n*DB
drShiftTo(n, r) {
for (let i = n; i < this.t; ++i) {
r[i - n] = this[i];
}
r.t = Math.max(this.t - n, 0);
r.s = this.s;
}
// BigInteger.prototype.lShiftTo = bnpLShiftTo;
// (protected) r = this << n
lShiftTo(n, r) {
const bs = n % this.DB;
const cbs = this.DB - bs;
const bm = (1 << cbs) - 1;
const ds = Math.floor(n / this.DB);
let c = (this.s << bs) & this.DM;
for (let i = this.t - 1; i >= 0; --i) {
r[i + ds + 1] = (this[i] >> cbs) | c;
c = (this[i] & bm) << bs;
}
for (let i = ds - 1; i >= 0; --i) {
r[i] = 0;
}
r[ds] = c;
r.t = this.t + ds + 1;
r.s = this.s;
r.clamp();
}
// BigInteger.prototype.rShiftTo = bnpRShiftTo;
// (protected) r = this >> n
rShiftTo(n, r) {
r.s = this.s;
const ds = Math.floor(n / this.DB);
if (ds >= this.t) {
r.t = 0;
return;
}
const bs = n % this.DB;
const cbs = this.DB - bs;
const bm = (1 << bs) - 1;
r[0] = this[ds] >> bs;
for (let i = ds + 1; i < this.t; ++i) {
r[i - ds - 1] |= (this[i] & bm) << cbs;
r[i - ds] = this[i] >> bs;
}
if (bs > 0) {
r[this.t - ds - 1] |= (this.s & bm) << cbs;
}
r.t = this.t - ds;
r.clamp();
}
// BigInteger.prototype.subTo = bnpSubTo;
// (protected) r = this - a
subTo(a, r) {
let i = 0;
let c = 0;
const m = Math.min(a.t, this.t);
while (i < m) {
c += this[i] - a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
if (a.t < this.t) {
c -= a.s;
while (i < this.t) {
c += this[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += this.s;
}
else {
c += this.s;
while (i < a.t) {
c -= a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c -= a.s;
}
r.s = (c < 0) ? -1 : 0;
if (c < -1) {
r[i++] = this.DV + c;
}
else if (c > 0) {
r[i++] = c;
}
r.t = i;
r.clamp();
}
// BigInteger.prototype.multiplyTo = bnpMultiplyTo;
// (protected) r = this * a, r != this,a (HAC 14.12)
// "this" should be the larger one if appropriate.
multiplyTo(a, r) {
const x = this.abs();
const y = a.abs();
let i = x.t;
r.t = i + y.t;
while (--i >= 0) {
r[i] = 0;
}
for (i = 0; i < y.t; ++i) {
r[i + x.t] = x.am(0, y[i], r, i, 0, x.t);
}
r.s = 0;
r.clamp();
if (this.s != a.s) {
BigInteger.ZERO.subTo(r, r);
}
}
// BigInteger.prototype.squareTo = bnpSquareTo;
// (protected) r = this^2, r != this (HAC 14.16)
squareTo(r) {
const x = this.abs();
let i = r.t = 2 * x.t;
while (--i >= 0) {
r[i] = 0;
}
for (i = 0; i < x.t - 1; ++i) {
const c = x.am(i, x[i], r, 2 * i, 0, 1);
if ((r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.DV) {
r[i + x.t] -= x.DV;
r[i + x.t + 1] = 1;
}
}
if (r.t > 0) {
r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1);
}
r.s = 0;
r.clamp();
}
// BigInteger.prototype.divRemTo = bnpDivRemTo;
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
// r != q, this != m. q or r may be null.
divRemTo(m, q, r) {
const pm = m.abs();
if (pm.t <= 0) {
return;
}
const pt = this.abs();
if (pt.t < pm.t) {
if (q != null) {
q.fromInt(0);
}
if (r != null) {
this.copyTo(r);
}
return;
}
if (r == null) {
r = nbi();
}
const y = nbi();
const ts = this.s;
const ms = m.s;
const nsh = this.DB - nbits(pm[pm.t - 1]); // normalize modulus
if (nsh > 0) {
pm.lShiftTo(nsh, y);
pt.lShiftTo(nsh, r);
}
else {
pm.copyTo(y);
pt.copyTo(r);
}
const ys = y.t;
const y0 = y[ys - 1];
if (y0 == 0) {
return;
}
const yt = y0 * (1 << this.F1) + ((ys > 1) ? y[ys - 2] >> this.F2 : 0);
const d1 = this.FV / yt;
const d2 = (1 << this.F1) / yt;
const e = 1 << this.F2;
let i = r.t;
let j = i - ys;
const t = (q == null) ? nbi() : q;
y.dlShiftTo(j, t);
if (r.compareTo(t) >= 0) {
r[r.t++] = 1;
r.subTo(t, r);
}
BigInteger.ONE.dlShiftTo(ys, t);
t.subTo(y, y); // "negative" y so we can replace sub with am later
while (y.t < ys) {
y[y.t++] = 0;
}
while (--j >= 0) {
// Estimate quotient digit
let qd = (r[--i] == y0) ? this.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2);
if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) { // Try it out
y.dlShiftTo(j, t);
r.subTo(t, r);
while (r[i] < --qd) {
r.subTo(t, r);
}
}
}
if (q != null) {
r.drShiftTo(ys, q);
if (ts != ms) {
BigInteger.ZERO.subTo(q, q);
}
}
r.t = ys;
r.clamp();
if (nsh > 0) {
r.rShiftTo(nsh, r);
} // Denormalize remainder
if (ts < 0) {
BigInteger.ZERO.subTo(r, r);
}
}
// BigInteger.prototype.invDigit = bnpInvDigit;
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
// justification:
// xy == 1 (mod m)
// xy = 1+km
// xy(2-xy) = (1+km)(1-km)
// x[y(2-xy)] = 1-k^2m^2
// x[y(2-xy)] == 1 (mod m^2)
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
// JS multiply "overflows" differently from C/C++, so care is needed here.
invDigit() {
if (this.t < 1) {
return 0;
}
const x = this[0];
if ((x & 1) == 0) {
return 0;
}
let y = x & 3; // y == 1/x mod 2^2
y = (y * (2 - (x & 0xf) * y)) & 0xf; // y == 1/x mod 2^4
y = (y * (2 - (x & 0xff) * y)) & 0xff; // y == 1/x mod 2^8
y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16
// last step - calculate inverse mod DV directly;
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
y = (y * (2 - x * y % this.DV)) % this.DV; // y == 1/x mod 2^dbits
// we really want the negative inverse, and -DV < y < DV
return (y > 0) ? this.DV - y : -y;
}
// BigInteger.prototype.isEven = bnpIsEven;
// (protected) true iff this is even
isEven() {
return ((this.t > 0) ? (this[0] & 1) : this.s) == 0;
}
// BigInteger.prototype.exp = bnpExp;
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
exp(e, z) {
if (e > 0xffffffff || e < 1) {
return BigInteger.ONE;
}
let r = nbi();
let r2 = nbi();
const g = z.convert(this);
let i = nbits(e) - 1;
g.copyTo(r);
while (--i >= 0) {
z.sqrTo(r, r2);
if ((e & (1 << i)) > 0) {
z.mulTo(r2, g, r);
}
else {
const t = r;
r = r2;
r2 = t;
}
}
return z.revert(r);
}
// BigInteger.prototype.chunkSize = bnpChunkSize;
// (protected) return x s.t. r^x < DV
chunkSize(r) {
return Math.floor(Math.LN2 * this.DB / Math.log(r));
}
// BigInteger.prototype.toRadix = bnpToRadix;
// (protected) convert to radix string
toRadix(b) {
if (b == null) {
b = 10;
}
if (this.signum() == 0 || b < 2 || b > 36) {
return "0";
}
const cs = this.chunkSize(b);
const a = Math.pow(b, cs);
const d = nbv(a);
const y = nbi();
const z = nbi();
let r = "";
this.divRemTo(d, y, z);
while (y.signum() > 0) {
r = (a + z.intValue()).toString(b).substr(1) + r;
y.divRemTo(d, y, z);
}
return z.intValue().toString(b) + r;
}
// BigInteger.prototype.fromRadix = bnpFromRadix;
// (protected) convert from radix string
fromRadix(s, b) {
this.fromInt(0);
if (b == null) {
b = 10;
}
const cs = this.chunkSize(b);
const d = Math.pow(b, cs);
let mi = false;
let j = 0;
let w = 0;
for (let i = 0; i < s.length; ++i) {
const x = intAt(s, i);
if (x < 0) {
if (s.charAt(i) == "-" && this.signum() == 0) {
mi = true;
}
continue;
}
w = b * w + x;
if (++j >= cs) {
this.dMultiply(d);
this.dAddOffset(w, 0);
j = 0;
w = 0;
}
}
if (j > 0) {
this.dMultiply(Math.pow(b, j));
this.dAddOffset(w, 0);
}
if (mi) {
BigInteger.ZERO.subTo(this, this);
}
}
// BigInteger.prototype.fromNumber = bnpFromNumber;
// (protected) alternate constructor
fromNumber(a, b, c) {
if ("number" == typeof b) {
// new BigInteger(int,int,RNG)
if (a < 2) {
this.fromInt(1);
}
else {
this.fromNumber(a, c);
if (!this.testBit(a - 1)) {
// force MSB set
this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, this);
}
if (this.isEven()) {
this.dAddOffset(1, 0);
} // force odd
while (!this.isProbablePrime(b)) {
this.dAddOffset(2, 0);
if (this.bitLength() > a) {
this.subTo(BigInteger.ONE.shiftLeft(a - 1), this);
}
}
}
}
else {
// new BigInteger(int,RNG)
const x = [];
const t = a & 7;
x.length = (a >> 3) + 1;
b.nextBytes(x);
if (t > 0) {
x[0] &= ((1 << t) - 1);
}
else {
x[0] = 0;
}
this.fromString(x, 256);
}
}
// BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
// (protected) r = this op a (bitwise)
bitwiseTo(a, op, r) {
let i;
let f;
const m = Math.min(a.t, this.t);
for (i = 0; i < m; ++i) {
r[i] = op(this[i], a[i]);
}
if (a.t < this.t) {
f = a.s & this.DM;
for (i = m; i < this.t; ++i) {
r[i] = op(this[i], f);
}
r.t = this.t;
}
else {
f = this.s & this.DM;
for (i = m; i < a.t; ++i) {
r[i] = op(f, a[i]);
}
r.t = a.t;
}
r.s = op(this.s, a.s);
r.clamp();
}
// BigInteger.prototype.changeBit = bnpChangeBit;
// (protected) this op (1<<n)
changeBit(n, op) {
const r = BigInteger.ONE.shiftLeft(n);
this.bitwiseTo(r, op, r);
return r;
}
// BigInteger.prototype.addTo = bnpAddTo;
// (protected) r = this + a
addTo(a, r) {
let i = 0;
let c = 0;
const m = Math.min(a.t, this.t);
while (i < m) {
c += this[i] + a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
if (a.t < this.t) {
c += a.s;
while (i < this.t) {
c += this[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += this.s;
}
else {
c += this.s;
while (i < a.t) {
c += a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += a.s;
}
r.s = (c < 0) ? -1 : 0;
if (c > 0) {
r[i++] = c;
}
else if (c < -1) {
r[i++] = this.DV + c;
}
r.t = i;
r.clamp();
}
// BigInteger.prototype.dMultiply = bnpDMultiply;
// (protected) this *= n, this >= 0, 1 < n < DV
dMultiply(n) {
this[this.t] = this.am(0, n - 1, this, 0, 0, this.t);
++this.t;
this.clamp();
}
// BigInteger.prototype.dAddOffset = bnpDAddOffset;
// (protected) this += n << w words, this >= 0
dAddOffset(n, w) {
if (n == 0) {
return;
}
while (this.t <= w) {
this[this.t++] = 0;
}
this[w] += n;
while (this[w] >= this.DV) {
this[w] -= this.DV;
if (++w >= this.t) {
this[this.t++] = 0;
}
++this[w];
}
}
// BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
// (protected) r = lower n words of "this * a", a.t <= n
// "this" should be the larger one if appropriate.
multiplyLowerTo(a, n, r) {
let i = Math.min(this.t + a.t, n);
r.s = 0; // assumes a,this >= 0
r.t = i;
while (i > 0) {
r[--i] = 0;
}
for (const j = r.t - this.t; i < j; ++i) {
r[i + this.t] = this.am(0, a[i], r, i, 0, this.t);
}
for (const j = Math.min(a.t, n); i < j; ++i) {
this.am(0, a[i], r, i, 0, n - i);
}
r.clamp();
}
// BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
// (protected) r = "this * a" without lower n words, n > 0
// "this" should be the larger one if appropriate.
multiplyUpperTo(a, n, r) {
--n;
let i = r.t = this.t + a.t - n;
r.s = 0; // assumes a,this >= 0
while (--i >= 0) {
r[i] = 0;
}
for (i = Math.max(n - this.t, 0); i < a.t; ++i) {
r[this.t + i - n] = this.am(n - i, a[i], r, 0, 0, this.t + i - n);
}
r.clamp();
r.drShiftTo(1, r);
}
// BigInteger.prototype.modInt = bnpModInt;
// (protected) this % n, n < 2^26
modInt(n) {
if (n <= 0) {
return 0;
}
const d = this.DV % n;
let r = (this.s < 0) ? n - 1 : 0;
if (this.t > 0) {
if (d == 0) {
r = this[0] % n;
}
else {
for (let i = this.t - 1; i >= 0; --i) {
r = (d * r + this[i]) % n;
}
}
}
return r;
}
// BigInteger.prototype.millerRabin = bnpMillerRabin;
// (protected) true if probably prime (HAC 4.24, Miller-Rabin)
millerRabin(t) {
const n1 = this.subtract(BigInteger.ONE);
const k = n1.getLowestSetBit();
if (k <= 0) {
return false;
}
const r = n1.shiftRight(k);
t = (t + 1) >> 1;
if (t > lowprimes.length) {
t = lowprimes.length;
}
const a = nbi();
for (let i = 0; i < t; ++i) {
// Pick bases at random, instead of starting at 2
a.fromInt(lowprimes[Math.floor(Math.random() * lowprimes.length)]);
let y = a.modPow(r, this);
if (y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
let j = 1;
while (j++ < k && y.compareTo(n1) != 0) {
y = y.modPowInt(2, this);
if (y.compareTo(BigInteger.ONE) == 0) {
return false;
}
}
if (y.compareTo(n1) != 0) {
return false;
}
}
}
return true;
}
// BigInteger.prototype.square = bnSquare;
// (public) this^2
square() {
const r = nbi();
this.squareTo(r);
return r;
}
//#region ASYNC
// Public API method
gcda(a, callback) {
let x = (this.s < 0) ? this.negate() : this.clone();
let y = (a.s < 0) ? a.negate() : a.clone();
if (x.compareTo(y) < 0) {
const t = x;
x = y;
y = t;
}
let i = x.getLowestSetBit();
let g = y.getLowestSetBit();
if (g < 0) {
callback(x);
return;
}
if (i < g) {
g = i;
}
if (g > 0) {
x.rShiftTo(g, x);
y.rShiftTo(g, y);
}
// Workhorse of the algorithm, gets called 200 - 800 times per 512 bit keygen.
const gcda1 = function () {
if ((i = x.getLowestSetBit()) > 0) {
x.rShiftTo(i, x);
}
if ((i = y.getLowestSetBit()) > 0) {
y.rShiftTo(i, y);
}
if (x.compareTo(y) >= 0) {
x.subTo(y, x);
x.rShiftTo(1, x);
}
else {
y.subTo(x, y);
y.rShiftTo(1, y);
}
if (!(x.signum() > 0)) {
if (g > 0) {
y.lShiftTo(g, y);
}
setTimeout(function () { callback(y); }, 0); // escape
}
else {
setTimeout(gcda1, 0);
}
};
setTimeout(gcda1, 10);
}
// (protected) alternate constructor
fromNumberAsync(a, b, c, callback) {
if ("number" == typeof b) {
if (a < 2) {
this.fromInt(1);
}
else {
this.fromNumber(a, c);
if (!this.testBit(a - 1)) {
this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, this);
}
if (this.isEven()) {
this.dAddOffset(1, 0);
}
const bnp = this;
const bnpfn1 = function () {
bnp.dAddOffset(2, 0);
if (bnp.bitLength() > a) {
bnp.subTo(BigInteger.ONE.shiftLeft(a - 1), bnp);
}
if (bnp.isProbablePrime(b)) {
setTimeout(function () { callback(); }, 0); // escape
}
else {
setTimeout(bnpfn1, 0);
}
};
setTimeout(bnpfn1, 0);
}
}
else {
const x = [];
const t = a & 7;
x.length = (a >> 3) + 1;
b.nextBytes(x);
if (t > 0) {
x[0] &= ((1 << t) - 1);
}
else {
x[0] = 0;
}
this.fromString(x, 256);
}
}
}
//#region REDUCERS
//#region NullExp
class NullExp {
constructor() {
}
// NullExp.prototype.convert = nNop;
convert(x) {
return x;
}
// NullExp.prototype.revert = nNop;
revert(x) {
return x;
}
// NullExp.prototype.mulTo = nMulTo;
mulTo(x, y, r) {
x.multiplyTo(y, r);
}
// NullExp.prototype.sqrTo = nSqrTo;
sqrTo(x, r) {
x.squareTo(r);
}
}
// Modular reduction using "classic" algorithm
class Classic {
constructor(m) {
this.m = m;
}
// Classic.prototype.convert = cConvert;
convert(x) {
if (x.s < 0 || x.compareTo(this.m) >= 0) {
return x.mod(this.m);
}
else {
return x;
}
}
// Classic.prototype.revert = cRevert;
revert(x) {
return x;
}
// Classic.prototype.reduce = cReduce;
reduce(x) {
x.divRemTo(this.m, null, x);
}
// Classic.prototype.mulTo = cMulTo;
mulTo(x, y, r) {
x.multiplyTo(y, r);
this.reduce(r);
}
// Classic.prototype.sqrTo = cSqrTo;
sqrTo(x, r) {
x.squareTo(r);
this.reduce(r);
}
}
//#endregion
//#region Montgomery
// Montgomery reduction
class Montgomery {
constructor(m) {
this.m = m;
this.mp = m.invDigit();
this.mpl = this.mp & 0x7fff;
this.mph = this.mp >> 15;
this.um = (1 << (m.DB - 15)) - 1;
this.mt2 = 2 * m.t;
}
// Montgomery.prototype.convert = montConvert;
// xR mod m
convert(x) {
const r = nbi();
x.abs().dlShiftTo(this.m.t, r);
r.divRemTo(this.m, null, r);
if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) {
this.m.subTo(r, r);
}
return r;
}
// Montgomery.prototype.revert = montRevert;
// x/R mod m
revert(x) {
const r = nbi();
x.copyTo(r);
this.reduce(r);
return r;
}
// Montgomery.prototype.reduce = montReduce;
// x = x/R mod m (HAC 14.32)
reduce(x) {
while (x.t <= this.mt2) {
// pad x so am has enough room later
x[x.t++] = 0;
}
for (let i = 0; i < this.m.t; ++i) {
// faster way of calculating u0 = x[i]*mp mod DV
let j = x[i] & 0x7fff;
const u0 = (j * this.mpl + (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) & x.DM;
// use am to combine the multiply-shift-add into one call
j = i + this.m.t;
x[j] += this.m.am(0, u0, x, i, 0, this.m.t);
// propagate carry
while (x[j] >= x.DV) {
x[j] -= x.DV;
x[++j]++;
}
}
x.clamp();
x.drShiftTo(this.m.t, x);
if (x.compareTo(this.m) >= 0) {
x.subTo(this.m, x);
}
}
// Montgomery.prototype.mulTo = montMulTo;
// r = "xy/R mod m"; x,y != r
mulTo(x, y, r) {
x.multiplyTo(y, r);
this.reduce(r);
}
// Montgomery.prototype.sqrTo = montSqrTo;
// r = "x^2/R mod m"; x != r
sqrTo(x, r) {
x.squareTo(r);
this.reduce(r);
}
}
//#endregion Montgomery
//#region Barrett
// Barrett modular reduction
class Barrett {
constructor(m) {
this.m = m;
// setup Barrett
this.r2 = nbi();
this.q3 = nbi();
BigInteger.ONE.dlShiftTo(2 * m.t, this.r2);
this.mu = this.r2.divide(m);
}
// Barrett.prototype.convert = barrettConvert;
convert(x) {
if (x.s < 0 || x.t > 2 * this.m.t) {
return x.mod(this.m);
}
else if (x.compareTo(this.m) < 0) {
return x;
}
else {
const r = nbi();
x.copyTo(r);
this.reduce(r);
return r;
}
}
// Barrett.prototype.revert = barrettRevert;
revert(x) {
return x;
}
// Barrett.prototype.reduce = barrettReduce;
// x = x mod m (HAC 14.42)
reduce(x) {
x.drShiftTo(this.m.t - 1, this.r2);
if (x.t > this.m.t + 1) {
x.t = this.m.t + 1;
x.clamp();
}
this.mu.multiplyUpperTo(this.r2, this.m.t + 1, this.q3);
this.m.multiplyLowerTo(this.q3, this.m.t + 1, this.r2);
while (x.compareTo(this.r2) < 0) {
x.dAddOffset(1, this.m.t + 1);
}
x.subTo(this.r2, x);
while (x.compareTo(this.m) >= 0) {
x.subTo(this.m, x);
}
}
// Barrett.prototype.mulTo = barrettMulTo;
// r = x*y mod m; x,y != r
mulTo(x, y, r) {
x.multiplyTo(y, r);
this.reduce(r);
}
// Barrett.prototype.sqrTo = barrettSqrTo;
// r = x^2 mod m; x != r
sqrTo(x, r) {
x.squareTo(r);
this.reduce(r);
}
}
//#endregion
//#endregion REDUCERS
// return new, unset BigInteger
export function nbi() { return new BigInteger(null); }
export function parseBigInt(str, r) {
return new BigInteger(str, r);
}
// am: Compute w_j += (x*this_i), propagate carries,
// c is initial carry, returns final carry.
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
// We need to select the fastest one that works in this environment.
const inBrowser = typeof navigator !== "undefined";
if (inBrowser && j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
// am2 avoids a big mult-and-extract completely.
// Max digit bits should be <= 30 because we do bitwise ops
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
BigInteger.prototype.am = function am2(i, x, w, j, c, n) {
const xl = x & 0x7fff;
const xh = x >> 15;
while (--n >= 0) {
let l = this[i] & 0x7fff;
const h = this[i++] >> 15;
const m = xh * l + h * xl;
l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff);
c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30);
w[j++] = l & 0x3fffffff;
}
return c;
};
dbits = 30;
}
else if (inBrowser && j_lm && (navigator.appName != "Netscape")) {
// am1: use a single mult and divide to get the high bits,
// max digit bits should be 26 because
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
BigInteger.prototype.am = function am1(i, x, w, j, c, n) {
while (--n >= 0) {
const v = x * this[i++] + w[j] + c;
c = Math.floor(v / 0x4000000);
w[j++] = v & 0x3ffffff;
}
return c;
};
dbits = 26;
}
else { // Mozilla/Netscape seems to prefer am3
// Alternately, set max digit bits to 28 since some
// browsers slow down when dealing with 32-bit numbers.
BigInteger.prototype.am = function am3(i, x, w, j, c, n) {
const xl = x & 0x3fff;
const xh = x >> 14;
while (--n >= 0) {
let l = this[i] & 0x3fff;
const h = this[i++] >> 14;
const m = xh * l + h * xl;
l = xl * l + ((m & 0x3fff) << 14) + w[j] + c;
c = (l >> 28) + (m >> 14) + xh * h;
w[j++] = l & 0xfffffff;
}
return c;
};
dbits = 28;
}
BigInteger.prototype.DB = dbits;
BigInteger.prototype.DM = ((1 << dbits) - 1);
BigInteger.prototype.DV = (1 << dbits);
const BI_FP = 52;
BigInteger.prototype.FV = Math.pow(2, BI_FP);
BigInteger.prototype.F1 = BI_FP - dbits;
BigInteger.prototype.F2 = 2 * dbits - BI_FP;
// Digit conversions
const BI_RC = [];
let rr;
let vv;
rr = "0".charCodeAt(0);
for (vv = 0; vv <= 9; ++vv) {
BI_RC[rr++] = vv;
}
rr = "a".charCodeAt(0);
for (vv = 10; vv < 36; ++vv) {
BI_RC[rr++] = vv;
}
rr = "A".charCodeAt(0);
for (vv = 10; vv < 36; ++vv) {
BI_RC[rr++] = vv;
}
export function intAt(s, i) {
const c = BI_RC[s.charCodeAt(i)];
return (c == null) ? -1 : c;
}
// return bigint initialized to value
export function nbv(i) {
const r = nbi();
r.fromInt(i);
return r;
}
// returns bit length of the integer x
export function nbits(x) {
let r = 1;
let t;
if ((t = x >>> 16) != 0) {
x = t;
r += 16;
}
if ((t = x >> 8) != 0) {
x = t;
r += 8;
}
if ((t = x >> 4) != 0) {
x = t;
r += 4;
}
if ((t = x >> 2) != 0) {
x = t;
r += 2;
}
if ((t = x >> 1) != 0) {
x = t;
r += 1;
}
return r;
}
// "constants"
BigInteger.ZERO = nbv(0);
BigInteger.ONE = nbv(1);