@proton/ccxt
Version:
A JavaScript / TypeScript / Python / C# / PHP cryptocurrency trading library with support for 130+ exchanges
143 lines (142 loc) • 5.88 kB
TypeScript
import { RSAKey } from "./lib/jsbn/rsa.js";
/**
* Create a new JSEncryptRSAKey that extends Tom Wu's RSA key object.
* This object is just a decorator for parsing the key parameter
* @param {string|Object} key - The key in string format, or an object containing
* the parameters needed to build a RSAKey object.
* @constructor
*/
export declare class JSEncryptRSAKey extends RSAKey {
constructor(key?: string);
/**
* Method to parse a pem encoded string containing both a public or private key.
* The method will translate the pem encoded string in a der encoded string and
* will parse private key and public key parameters. This method accepts public key
* in the rsaencryption pkcs #1 format (oid: 1.2.840.113549.1.1.1).
*
* @todo Check how many rsa formats use the same format of pkcs #1.
*
* The format is defined as:
* PublicKeyInfo ::= SEQUENCE {
* algorithm AlgorithmIdentifier,
* PublicKey BIT STRING
* }
* Where AlgorithmIdentifier is:
* AlgorithmIdentifier ::= SEQUENCE {
* algorithm OBJECT IDENTIFIER, the OID of the enc algorithm
* parameters ANY DEFINED BY algorithm OPTIONAL (NULL for PKCS #1)
* }
* and PublicKey is a SEQUENCE encapsulated in a BIT STRING
* RSAPublicKey ::= SEQUENCE {
* modulus INTEGER, -- n
* publicExponent INTEGER -- e
* }
* it's possible to examine the structure of the keys obtained from openssl using
* an asn.1 dumper as the one used here to parse the components: http://lapo.it/asn1js/
* @argument {string} pem the pem encoded string, can include the BEGIN/END header/footer
* @private
*/
parseKey(pem: string): boolean;
/**
* Translate rsa parameters in a hex encoded string representing the rsa key.
*
* The translation follow the ASN.1 notation :
* RSAPrivateKey ::= SEQUENCE {
* version Version,
* modulus INTEGER, -- n
* publicExponent INTEGER, -- e
* privateExponent INTEGER, -- d
* prime1 INTEGER, -- p
* prime2 INTEGER, -- q
* exponent1 INTEGER, -- d mod (p1)
* exponent2 INTEGER, -- d mod (q-1)
* coefficient INTEGER, -- (inverse of q) mod p
* }
* @returns {string} DER Encoded String representing the rsa private key
* @private
*/
getPrivateBaseKey(): string;
/**
* base64 (pem) encoded version of the DER encoded representation
* @returns {string} pem encoded representation without header and footer
* @public
*/
getPrivateBaseKeyB64(): string;
/**
* Translate rsa parameters in a hex encoded string representing the rsa public key.
* The representation follow the ASN.1 notation :
* PublicKeyInfo ::= SEQUENCE {
* algorithm AlgorithmIdentifier,
* PublicKey BIT STRING
* }
* Where AlgorithmIdentifier is:
* AlgorithmIdentifier ::= SEQUENCE {
* algorithm OBJECT IDENTIFIER, the OID of the enc algorithm
* parameters ANY DEFINED BY algorithm OPTIONAL (NULL for PKCS #1)
* }
* and PublicKey is a SEQUENCE encapsulated in a BIT STRING
* RSAPublicKey ::= SEQUENCE {
* modulus INTEGER, -- n
* publicExponent INTEGER -- e
* }
* @returns {string} DER Encoded String representing the rsa public key
* @private
*/
getPublicBaseKey(): string;
/**
* base64 (pem) encoded version of the DER encoded representation
* @returns {string} pem encoded representation without header and footer
* @public
*/
getPublicBaseKeyB64(): string;
/**
* wrap the string in block of width chars. The default value for rsa keys is 64
* characters.
* @param {string} str the pem encoded string without header and footer
* @param {Number} [width=64] - the length the string has to be wrapped at
* @returns {string}
* @private
*/
static wordwrap(str: string, width?: number): string;
/**
* Retrieve the pem encoded private key
* @returns {string} the pem encoded private key with header/footer
* @public
*/
getPrivateKey(): string;
/**
* Retrieve the pem encoded public key
* @returns {string} the pem encoded public key with header/footer
* @public
*/
getPublicKey(): string;
/**
* Check if the object contains the necessary parameters to populate the rsa modulus
* and public exponent parameters.
* @param {Object} [obj={}] - An object that may contain the two public key
* parameters
* @returns {boolean} true if the object contains both the modulus and the public exponent
* properties (n and e)
* @todo check for types of n and e. N should be a parseable bigInt object, E should
* be a parseable integer number
* @private
*/
static hasPublicKeyProperty(obj: object): boolean;
/**
* Check if the object contains ALL the parameters of an RSA key.
* @param {Object} [obj={}] - An object that may contain nine rsa key
* parameters
* @returns {boolean} true if the object contains all the parameters needed
* @todo check for types of the parameters all the parameters but the public exponent
* should be parseable bigint objects, the public exponent should be a parseable integer number
* @private
*/
static hasPrivateKeyProperty(obj: object): boolean;
/**
* Parse the properties of obj in the current rsa object. Obj should AT LEAST
* include the modulus and public exponent (n, e) parameters.
* @param {Object} obj - the object containing rsa parameters
* @private
*/
parsePropertiesFrom(obj: any): void;
}