@primerouting/zitadel-node
Version:
Library for API access to ZITADEL. Provides compiled gRPC service clients and helpers for applications and service accounts. Support http2 self-hosted instances
94 lines (93 loc) • 3.8 kB
TypeScript
import Long from "long";
import _m0 from "protobufjs/minimal";
export declare const protobufPackage = "google.protobuf";
/**
* A Duration represents a signed, fixed-length span of time represented
* as a count of seconds and fractions of seconds at nanosecond
* resolution. It is independent of any calendar and concepts like "day"
* or "month". It is related to Timestamp in that the difference between
* two Timestamp values is a Duration and it can be added or subtracted
* from a Timestamp. Range is approximately +-10,000 years.
*
* # Examples
*
* Example 1: Compute Duration from two Timestamps in pseudo code.
*
* Timestamp start = ...;
* Timestamp end = ...;
* Duration duration = ...;
*
* duration.seconds = end.seconds - start.seconds;
* duration.nanos = end.nanos - start.nanos;
*
* if (duration.seconds < 0 && duration.nanos > 0) {
* duration.seconds += 1;
* duration.nanos -= 1000000000;
* } else if (duration.seconds > 0 && duration.nanos < 0) {
* duration.seconds -= 1;
* duration.nanos += 1000000000;
* }
*
* Example 2: Compute Timestamp from Timestamp + Duration in pseudo code.
*
* Timestamp start = ...;
* Duration duration = ...;
* Timestamp end = ...;
*
* end.seconds = start.seconds + duration.seconds;
* end.nanos = start.nanos + duration.nanos;
*
* if (end.nanos < 0) {
* end.seconds -= 1;
* end.nanos += 1000000000;
* } else if (end.nanos >= 1000000000) {
* end.seconds += 1;
* end.nanos -= 1000000000;
* }
*
* Example 3: Compute Duration from datetime.timedelta in Python.
*
* td = datetime.timedelta(days=3, minutes=10)
* duration = Duration()
* duration.FromTimedelta(td)
*
* # JSON Mapping
*
* In JSON format, the Duration type is encoded as a string rather than an
* object, where the string ends in the suffix "s" (indicating seconds) and
* is preceded by the number of seconds, with nanoseconds expressed as
* fractional seconds. For example, 3 seconds with 0 nanoseconds should be
* encoded in JSON format as "3s", while 3 seconds and 1 nanosecond should
* be expressed in JSON format as "3.000000001s", and 3 seconds and 1
* microsecond should be expressed in JSON format as "3.000001s".
*/
export interface Duration {
/**
* Signed seconds of the span of time. Must be from -315,576,000,000
* to +315,576,000,000 inclusive. Note: these bounds are computed from:
* 60 sec/min * 60 min/hr * 24 hr/day * 365.25 days/year * 10000 years
*/
seconds: Long;
/**
* Signed fractions of a second at nanosecond resolution of the span
* of time. Durations less than one second are represented with a 0
* `seconds` field and a positive or negative `nanos` field. For durations
* of one second or more, a non-zero value for the `nanos` field must be
* of the same sign as the `seconds` field. Must be from -999,999,999
* to +999,999,999 inclusive.
*/
nanos: number;
}
export declare const Duration: {
encode(message: Duration, writer?: _m0.Writer): _m0.Writer;
decode(input: _m0.Reader | Uint8Array, length?: number): Duration;
fromJSON(object: any): Duration;
toJSON(message: Duration): unknown;
create(base?: DeepPartial<Duration>): Duration;
fromPartial(object: DeepPartial<Duration>): Duration;
};
type Builtin = Date | Function | Uint8Array | string | number | boolean | undefined;
export type DeepPartial<T> = T extends Builtin ? T : T extends Long ? string | number | Long : T extends globalThis.Array<infer U> ? globalThis.Array<DeepPartial<U>> : T extends ReadonlyArray<infer U> ? ReadonlyArray<DeepPartial<U>> : T extends {} ? {
[K in keyof T]?: DeepPartial<T[K]>;
} : Partial<T>;
export {};