UNPKG

@powrldgr/raydium-sdk-v2

Version:

An SDK for building applications on top of Raydium.

1 lines 329 kB
{"version":3,"sources":["../../src/common/bignumber.ts","../../node_modules/decimal.js/decimal.mjs","../../src/module/amount.ts","../../src/common/logger.ts","../../src/common/accountInfo.ts","../../src/common/constant.ts","../../src/raydium/token/constant.ts","../../src/module/token.ts","../../src/common/pubKey.ts","../../src/module/currency.ts","../../src/module/formatter.ts","../../src/module/fraction.ts","../../src/module/percent.ts","../../src/module/price.ts","../../src/common/fractionUtil.ts","../../src/common/pda.ts","../../src/common/txTool/txUtils.ts","../../src/common/programId.ts","../../src/common/transfer.ts","../../src/common/txTool/lookupTable.ts","../../src/common/txTool/txTool.ts","../../src/common/utility.ts","../../src/common/fee.ts"],"sourcesContent":["import BN from \"bn.js\";\nimport Decimal from \"decimal.js\";\nimport { CurrencyAmount, TokenAmount } from \"../module/amount\";\nimport { Currency } from \"../module/currency\";\nimport { Fraction } from \"../module/fraction\";\nimport { Percent } from \"../module/percent\";\nimport { Price } from \"../module/price\";\nimport { Token } from \"../module/token\";\nimport { SplToken, TokenJson } from \"../raydium/token/type\";\nimport { ReplaceType } from \"../raydium/type\";\nimport { parseBigNumberish } from \"./constant\";\nimport { mul } from \"./fractionUtil\";\nimport { notInnerObject } from \"./utility\";\n\nexport const BN_ZERO = new BN(0);\nexport const BN_ONE = new BN(1);\nexport const BN_TWO = new BN(2);\nexport const BN_THREE = new BN(3);\nexport const BN_FIVE = new BN(5);\nexport const BN_TEN = new BN(10);\nexport const BN_100 = new BN(100);\nexport const BN_1000 = new BN(1000);\nexport const BN_10000 = new BN(10000);\nexport type BigNumberish = BN | string | number | bigint;\nexport type Numberish = number | string | bigint | Fraction | BN;\n\nexport function tenExponential(shift: BigNumberish): BN {\n return BN_TEN.pow(parseBigNumberish(shift));\n}\n\n/**\n *\n * @example\n * getIntInfo(0.34) => { numerator: '34', denominator: '100'}\n * getIntInfo('0.34') //=> { numerator: '34', denominator: '100'}\n */\nexport function parseNumberInfo(n: Numberish | undefined): {\n denominator: string;\n numerator: string;\n sign?: string;\n int?: string;\n dec?: string;\n} {\n if (n === undefined) return { denominator: \"1\", numerator: \"0\" };\n if (n instanceof BN) {\n return { numerator: n.toString(), denominator: \"1\" };\n }\n\n if (n instanceof Fraction) {\n return { denominator: n.denominator.toString(), numerator: n.numerator.toString() };\n }\n\n const s = String(n);\n const [, sign = \"\", int = \"\", dec = \"\"] = s.replace(\",\", \"\").match(/(-?)(\\d*)\\.?(\\d*)/) ?? [];\n const denominator = \"1\" + \"0\".repeat(dec.length);\n const numerator = sign + (int === \"0\" ? \"\" : int) + dec || \"0\";\n return { denominator, numerator, sign, int, dec };\n}\n\n// round up\nexport function divCeil(a: BN, b: BN): BN {\n // eslint-disable-next-line @typescript-eslint/ban-ts-comment\n // @ts-ignore\n const dm = a.divmod(b);\n\n // Fast case - exact division\n if (dm.mod.isZero()) return dm.div;\n\n // Round up\n return dm.div.isNeg() ? dm.div.isubn(1) : dm.div.iaddn(1);\n}\n\nexport function shakeFractionDecimal(n: Fraction): string {\n const [, sign = \"\", int = \"\"] = n.toFixed(2).match(/(-?)(\\d*)\\.?(\\d*)/) ?? [];\n return `${sign}${int}`;\n}\n\nexport function toBN(n: Numberish, decimal: BigNumberish = 0): BN {\n if (n instanceof BN) return n;\n return new BN(shakeFractionDecimal(toFraction(n).mul(BN_TEN.pow(new BN(String(decimal))))));\n}\n\nexport function toFraction(value: Numberish): Fraction {\n // to complete math format(may have decimal), not int\n if (value instanceof Percent) return new Fraction(value.numerator, value.denominator);\n\n if (value instanceof Price) return value.adjusted;\n\n // to complete math format(may have decimal), not BN\n if (value instanceof TokenAmount)\n try {\n return toFraction(value.toExact());\n } catch {\n return new Fraction(BN_ZERO);\n }\n\n // do not ideal with other fraction value\n if (value instanceof Fraction) return value;\n\n // wrap to Fraction\n const n = String(value);\n const details = parseNumberInfo(n);\n return new Fraction(details.numerator, details.denominator);\n}\n\nexport function ceilDiv(tokenAmount: BN, feeNumerator: BN, feeDenominator: BN): BN {\n return tokenAmount.mul(feeNumerator).add(feeDenominator).sub(new BN(1)).div(feeDenominator);\n}\n\nexport function floorDiv(tokenAmount: BN, feeNumerator: BN, feeDenominator: BN): BN {\n return tokenAmount.mul(feeNumerator).div(feeDenominator);\n}\n\n/**\n * @example\n * toPercent(3.14) // => Percent { 314.00% }\n * toPercent(3.14, { alreadyDecimaled: true }) // => Percent {3.14%}\n */\nexport function toPercent(\n n: Numberish,\n options?: { /* usually used for backend data */ alreadyDecimaled?: boolean },\n): Percent {\n const { numerator, denominator } = parseNumberInfo(n);\n return new Percent(new BN(numerator), new BN(denominator).mul(options?.alreadyDecimaled ? new BN(100) : new BN(1)));\n}\n\nexport function toTokenPrice(params: {\n token: TokenJson | Token | SplToken;\n numberPrice: Numberish;\n decimalDone?: boolean;\n}): Price {\n const { token, numberPrice, decimalDone } = params;\n const usdCurrency = new Token({ mint: \"\", decimals: 6, symbol: \"usd\", name: \"usd\", skipMint: true });\n const { numerator, denominator } = parseNumberInfo(numberPrice);\n const parsedNumerator = decimalDone ? new BN(numerator).mul(BN_TEN.pow(new BN(token.decimals))) : numerator;\n const parsedDenominator = new BN(denominator).mul(BN_TEN.pow(new BN(usdCurrency.decimals)));\n\n return new Price({\n baseToken: usdCurrency,\n denominator: parsedDenominator.toString(),\n quoteToken: new Token({ ...token, skipMint: true, mint: \"\" }),\n numerator: parsedNumerator.toString(),\n });\n}\n\nexport function toUsdCurrency(amount: Numberish): CurrencyAmount {\n const usdCurrency = new Currency({ decimals: 6, symbol: \"usd\", name: \"usd\" });\n const amountBigNumber = toBN(mul(amount, 10 ** usdCurrency.decimals)!);\n return new CurrencyAmount(usdCurrency, amountBigNumber);\n}\n\nexport function toTotalPrice(amount: Numberish | undefined, price: Price | undefined): CurrencyAmount {\n if (!price || !amount) return toUsdCurrency(0);\n return toUsdCurrency(mul(amount, price)!);\n}\n\nexport function decimalToFraction(n: Decimal | undefined): Fraction | undefined {\n if (n == null) return undefined;\n const { numerator, denominator } = parseNumberInfo(n.toString());\n return new Fraction(numerator, denominator);\n}\n\nexport function isDecimal(val: unknown): boolean {\n return val instanceof Decimal;\n}\n\nexport function recursivelyDecimalToFraction<T>(info: T): ReplaceType<T, Decimal, Fraction> {\n // @ts-expect-error no need type for inner code\n return isDecimal(info)\n ? decimalToFraction(info as any)\n : Array.isArray(info)\n ? info.map((k) => recursivelyDecimalToFraction(k))\n : notInnerObject(info)\n ? Object.fromEntries(Object.entries(info as any).map(([k, v]) => [k, recursivelyDecimalToFraction(v)]))\n : info;\n}\n","/*\r\n * decimal.js v10.3.1\r\n * An arbitrary-precision Decimal type for JavaScript.\r\n * https://github.com/MikeMcl/decimal.js\r\n * Copyright (c) 2021 Michael Mclaughlin <M8ch88l@gmail.com>\r\n * MIT Licence\r\n */\r\n\r\n\r\n// ----------------------------------- EDITABLE DEFAULTS ------------------------------------ //\r\n\r\n\r\n // The maximum exponent magnitude.\r\n // The limit on the value of `toExpNeg`, `toExpPos`, `minE` and `maxE`.\r\nvar EXP_LIMIT = 9e15, // 0 to 9e15\r\n\r\n // The limit on the value of `precision`, and on the value of the first argument to\r\n // `toDecimalPlaces`, `toExponential`, `toFixed`, `toPrecision` and `toSignificantDigits`.\r\n MAX_DIGITS = 1e9, // 0 to 1e9\r\n\r\n // Base conversion alphabet.\r\n NUMERALS = '0123456789abcdef',\r\n\r\n // The natural logarithm of 10 (1025 digits).\r\n LN10 = '2.3025850929940456840179914546843642076011014886287729760333279009675726096773524802359972050895982983419677840422862486334095254650828067566662873690987816894829072083255546808437998948262331985283935053089653777326288461633662222876982198867465436674744042432743651550489343149393914796194044002221051017141748003688084012647080685567743216228355220114804663715659121373450747856947683463616792101806445070648000277502684916746550586856935673420670581136429224554405758925724208241314695689016758940256776311356919292033376587141660230105703089634572075440370847469940168269282808481184289314848524948644871927809676271275775397027668605952496716674183485704422507197965004714951050492214776567636938662976979522110718264549734772662425709429322582798502585509785265383207606726317164309505995087807523710333101197857547331541421808427543863591778117054309827482385045648019095610299291824318237525357709750539565187697510374970888692180205189339507238539205144634197265287286965110862571492198849978748873771345686209167058',\r\n\r\n // Pi (1025 digits).\r\n PI = '3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989380952572010654858632789',\r\n\r\n\r\n // The initial configuration properties of the Decimal constructor.\r\n DEFAULTS = {\r\n\r\n // These values must be integers within the stated ranges (inclusive).\r\n // Most of these values can be changed at run-time using the `Decimal.config` method.\r\n\r\n // The maximum number of significant digits of the result of a calculation or base conversion.\r\n // E.g. `Decimal.config({ precision: 20 });`\r\n precision: 20, // 1 to MAX_DIGITS\r\n\r\n // The rounding mode used when rounding to `precision`.\r\n //\r\n // ROUND_UP 0 Away from zero.\r\n // ROUND_DOWN 1 Towards zero.\r\n // ROUND_CEIL 2 Towards +Infinity.\r\n // ROUND_FLOOR 3 Towards -Infinity.\r\n // ROUND_HALF_UP 4 Towards nearest neighbour. If equidistant, up.\r\n // ROUND_HALF_DOWN 5 Towards nearest neighbour. If equidistant, down.\r\n // ROUND_HALF_EVEN 6 Towards nearest neighbour. If equidistant, towards even neighbour.\r\n // ROUND_HALF_CEIL 7 Towards nearest neighbour. If equidistant, towards +Infinity.\r\n // ROUND_HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity.\r\n //\r\n // E.g.\r\n // `Decimal.rounding = 4;`\r\n // `Decimal.rounding = Decimal.ROUND_HALF_UP;`\r\n rounding: 4, // 0 to 8\r\n\r\n // The modulo mode used when calculating the modulus: a mod n.\r\n // The quotient (q = a / n) is calculated according to the corresponding rounding mode.\r\n // The remainder (r) is calculated as: r = a - n * q.\r\n //\r\n // UP 0 The remainder is positive if the dividend is negative, else is negative.\r\n // DOWN 1 The remainder has the same sign as the dividend (JavaScript %).\r\n // FLOOR 3 The remainder has the same sign as the divisor (Python %).\r\n // HALF_EVEN 6 The IEEE 754 remainder function.\r\n // EUCLID 9 Euclidian division. q = sign(n) * floor(a / abs(n)). Always positive.\r\n //\r\n // Truncated division (1), floored division (3), the IEEE 754 remainder (6), and Euclidian\r\n // division (9) are commonly used for the modulus operation. The other rounding modes can also\r\n // be used, but they may not give useful results.\r\n modulo: 1, // 0 to 9\r\n\r\n // The exponent value at and beneath which `toString` returns exponential notation.\r\n // JavaScript numbers: -7\r\n toExpNeg: -7, // 0 to -EXP_LIMIT\r\n\r\n // The exponent value at and above which `toString` returns exponential notation.\r\n // JavaScript numbers: 21\r\n toExpPos: 21, // 0 to EXP_LIMIT\r\n\r\n // The minimum exponent value, beneath which underflow to zero occurs.\r\n // JavaScript numbers: -324 (5e-324)\r\n minE: -EXP_LIMIT, // -1 to -EXP_LIMIT\r\n\r\n // The maximum exponent value, above which overflow to Infinity occurs.\r\n // JavaScript numbers: 308 (1.7976931348623157e+308)\r\n maxE: EXP_LIMIT, // 1 to EXP_LIMIT\r\n\r\n // Whether to use cryptographically-secure random number generation, if available.\r\n crypto: false // true/false\r\n },\r\n\r\n\r\n// ----------------------------------- END OF EDITABLE DEFAULTS ------------------------------- //\r\n\r\n\r\n inexact, quadrant,\r\n external = true,\r\n\r\n decimalError = '[DecimalError] ',\r\n invalidArgument = decimalError + 'Invalid argument: ',\r\n precisionLimitExceeded = decimalError + 'Precision limit exceeded',\r\n cryptoUnavailable = decimalError + 'crypto unavailable',\r\n tag = '[object Decimal]',\r\n\r\n mathfloor = Math.floor,\r\n mathpow = Math.pow,\r\n\r\n isBinary = /^0b([01]+(\\.[01]*)?|\\.[01]+)(p[+-]?\\d+)?$/i,\r\n isHex = /^0x([0-9a-f]+(\\.[0-9a-f]*)?|\\.[0-9a-f]+)(p[+-]?\\d+)?$/i,\r\n isOctal = /^0o([0-7]+(\\.[0-7]*)?|\\.[0-7]+)(p[+-]?\\d+)?$/i,\r\n isDecimal = /^(\\d+(\\.\\d*)?|\\.\\d+)(e[+-]?\\d+)?$/i,\r\n\r\n BASE = 1e7,\r\n LOG_BASE = 7,\r\n MAX_SAFE_INTEGER = 9007199254740991,\r\n\r\n LN10_PRECISION = LN10.length - 1,\r\n PI_PRECISION = PI.length - 1,\r\n\r\n // Decimal.prototype object\r\n P = { toStringTag: tag };\r\n\r\n\r\n// Decimal prototype methods\r\n\r\n\r\n/*\r\n * absoluteValue abs\r\n * ceil\r\n * clampedTo clamp\r\n * comparedTo cmp\r\n * cosine cos\r\n * cubeRoot cbrt\r\n * decimalPlaces dp\r\n * dividedBy div\r\n * dividedToIntegerBy divToInt\r\n * equals eq\r\n * floor\r\n * greaterThan gt\r\n * greaterThanOrEqualTo gte\r\n * hyperbolicCosine cosh\r\n * hyperbolicSine sinh\r\n * hyperbolicTangent tanh\r\n * inverseCosine acos\r\n * inverseHyperbolicCosine acosh\r\n * inverseHyperbolicSine asinh\r\n * inverseHyperbolicTangent atanh\r\n * inverseSine asin\r\n * inverseTangent atan\r\n * isFinite\r\n * isInteger isInt\r\n * isNaN\r\n * isNegative isNeg\r\n * isPositive isPos\r\n * isZero\r\n * lessThan lt\r\n * lessThanOrEqualTo lte\r\n * logarithm log\r\n * [maximum] [max]\r\n * [minimum] [min]\r\n * minus sub\r\n * modulo mod\r\n * naturalExponential exp\r\n * naturalLogarithm ln\r\n * negated neg\r\n * plus add\r\n * precision sd\r\n * round\r\n * sine sin\r\n * squareRoot sqrt\r\n * tangent tan\r\n * times mul\r\n * toBinary\r\n * toDecimalPlaces toDP\r\n * toExponential\r\n * toFixed\r\n * toFraction\r\n * toHexadecimal toHex\r\n * toNearest\r\n * toNumber\r\n * toOctal\r\n * toPower pow\r\n * toPrecision\r\n * toSignificantDigits toSD\r\n * toString\r\n * truncated trunc\r\n * valueOf toJSON\r\n */\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the absolute value of this Decimal.\r\n *\r\n */\r\nP.absoluteValue = P.abs = function () {\r\n var x = new this.constructor(this);\r\n if (x.s < 0) x.s = 1;\r\n return finalise(x);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the value of this Decimal rounded to a whole number in the\r\n * direction of positive Infinity.\r\n *\r\n */\r\nP.ceil = function () {\r\n return finalise(new this.constructor(this), this.e + 1, 2);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the value of this Decimal clamped to the range\r\n * delineated by `min` and `max`.\r\n *\r\n * min {number|string|Decimal}\r\n * max {number|string|Decimal}\r\n *\r\n */\r\nP.clampedTo = P.clamp = function (min, max) {\r\n var k,\r\n x = this,\r\n Ctor = x.constructor;\r\n min = new Ctor(min);\r\n max = new Ctor(max);\r\n if (!min.s || !max.s) return new Ctor(NaN);\r\n if (min.gt(max)) throw Error(invalidArgument + max);\r\n k = x.cmp(min);\r\n return k < 0 ? min : x.cmp(max) > 0 ? max : new Ctor(x);\r\n};\r\n\r\n\r\n/*\r\n * Return\r\n * 1 if the value of this Decimal is greater than the value of `y`,\r\n * -1 if the value of this Decimal is less than the value of `y`,\r\n * 0 if they have the same value,\r\n * NaN if the value of either Decimal is NaN.\r\n *\r\n */\r\nP.comparedTo = P.cmp = function (y) {\r\n var i, j, xdL, ydL,\r\n x = this,\r\n xd = x.d,\r\n yd = (y = new x.constructor(y)).d,\r\n xs = x.s,\r\n ys = y.s;\r\n\r\n // Either NaN or ±Infinity?\r\n if (!xd || !yd) {\r\n return !xs || !ys ? NaN : xs !== ys ? xs : xd === yd ? 0 : !xd ^ xs < 0 ? 1 : -1;\r\n }\r\n\r\n // Either zero?\r\n if (!xd[0] || !yd[0]) return xd[0] ? xs : yd[0] ? -ys : 0;\r\n\r\n // Signs differ?\r\n if (xs !== ys) return xs;\r\n\r\n // Compare exponents.\r\n if (x.e !== y.e) return x.e > y.e ^ xs < 0 ? 1 : -1;\r\n\r\n xdL = xd.length;\r\n ydL = yd.length;\r\n\r\n // Compare digit by digit.\r\n for (i = 0, j = xdL < ydL ? xdL : ydL; i < j; ++i) {\r\n if (xd[i] !== yd[i]) return xd[i] > yd[i] ^ xs < 0 ? 1 : -1;\r\n }\r\n\r\n // Compare lengths.\r\n return xdL === ydL ? 0 : xdL > ydL ^ xs < 0 ? 1 : -1;\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the cosine of the value in radians of this Decimal.\r\n *\r\n * Domain: [-Infinity, Infinity]\r\n * Range: [-1, 1]\r\n *\r\n * cos(0) = 1\r\n * cos(-0) = 1\r\n * cos(Infinity) = NaN\r\n * cos(-Infinity) = NaN\r\n * cos(NaN) = NaN\r\n *\r\n */\r\nP.cosine = P.cos = function () {\r\n var pr, rm,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (!x.d) return new Ctor(NaN);\r\n\r\n // cos(0) = cos(-0) = 1\r\n if (!x.d[0]) return new Ctor(1);\r\n\r\n pr = Ctor.precision;\r\n rm = Ctor.rounding;\r\n Ctor.precision = pr + Math.max(x.e, x.sd()) + LOG_BASE;\r\n Ctor.rounding = 1;\r\n\r\n x = cosine(Ctor, toLessThanHalfPi(Ctor, x));\r\n\r\n Ctor.precision = pr;\r\n Ctor.rounding = rm;\r\n\r\n return finalise(quadrant == 2 || quadrant == 3 ? x.neg() : x, pr, rm, true);\r\n};\r\n\r\n\r\n/*\r\n *\r\n * Return a new Decimal whose value is the cube root of the value of this Decimal, rounded to\r\n * `precision` significant digits using rounding mode `rounding`.\r\n *\r\n * cbrt(0) = 0\r\n * cbrt(-0) = -0\r\n * cbrt(1) = 1\r\n * cbrt(-1) = -1\r\n * cbrt(N) = N\r\n * cbrt(-I) = -I\r\n * cbrt(I) = I\r\n *\r\n * Math.cbrt(x) = (x < 0 ? -Math.pow(-x, 1/3) : Math.pow(x, 1/3))\r\n *\r\n */\r\nP.cubeRoot = P.cbrt = function () {\r\n var e, m, n, r, rep, s, sd, t, t3, t3plusx,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (!x.isFinite() || x.isZero()) return new Ctor(x);\r\n external = false;\r\n\r\n // Initial estimate.\r\n s = x.s * mathpow(x.s * x, 1 / 3);\r\n\r\n // Math.cbrt underflow/overflow?\r\n // Pass x to Math.pow as integer, then adjust the exponent of the result.\r\n if (!s || Math.abs(s) == 1 / 0) {\r\n n = digitsToString(x.d);\r\n e = x.e;\r\n\r\n // Adjust n exponent so it is a multiple of 3 away from x exponent.\r\n if (s = (e - n.length + 1) % 3) n += (s == 1 || s == -2 ? '0' : '00');\r\n s = mathpow(n, 1 / 3);\r\n\r\n // Rarely, e may be one less than the result exponent value.\r\n e = mathfloor((e + 1) / 3) - (e % 3 == (e < 0 ? -1 : 2));\r\n\r\n if (s == 1 / 0) {\r\n n = '5e' + e;\r\n } else {\r\n n = s.toExponential();\r\n n = n.slice(0, n.indexOf('e') + 1) + e;\r\n }\r\n\r\n r = new Ctor(n);\r\n r.s = x.s;\r\n } else {\r\n r = new Ctor(s.toString());\r\n }\r\n\r\n sd = (e = Ctor.precision) + 3;\r\n\r\n // Halley's method.\r\n // TODO? Compare Newton's method.\r\n for (;;) {\r\n t = r;\r\n t3 = t.times(t).times(t);\r\n t3plusx = t3.plus(x);\r\n r = divide(t3plusx.plus(x).times(t), t3plusx.plus(t3), sd + 2, 1);\r\n\r\n // TODO? Replace with for-loop and checkRoundingDigits.\r\n if (digitsToString(t.d).slice(0, sd) === (n = digitsToString(r.d)).slice(0, sd)) {\r\n n = n.slice(sd - 3, sd + 1);\r\n\r\n // The 4th rounding digit may be in error by -1 so if the 4 rounding digits are 9999 or 4999\r\n // , i.e. approaching a rounding boundary, continue the iteration.\r\n if (n == '9999' || !rep && n == '4999') {\r\n\r\n // On the first iteration only, check to see if rounding up gives the exact result as the\r\n // nines may infinitely repeat.\r\n if (!rep) {\r\n finalise(t, e + 1, 0);\r\n\r\n if (t.times(t).times(t).eq(x)) {\r\n r = t;\r\n break;\r\n }\r\n }\r\n\r\n sd += 4;\r\n rep = 1;\r\n } else {\r\n\r\n // If the rounding digits are null, 0{0,4} or 50{0,3}, check for an exact result.\r\n // If not, then there are further digits and m will be truthy.\r\n if (!+n || !+n.slice(1) && n.charAt(0) == '5') {\r\n\r\n // Truncate to the first rounding digit.\r\n finalise(r, e + 1, 1);\r\n m = !r.times(r).times(r).eq(x);\r\n }\r\n\r\n break;\r\n }\r\n }\r\n }\r\n\r\n external = true;\r\n\r\n return finalise(r, e, Ctor.rounding, m);\r\n};\r\n\r\n\r\n/*\r\n * Return the number of decimal places of the value of this Decimal.\r\n *\r\n */\r\nP.decimalPlaces = P.dp = function () {\r\n var w,\r\n d = this.d,\r\n n = NaN;\r\n\r\n if (d) {\r\n w = d.length - 1;\r\n n = (w - mathfloor(this.e / LOG_BASE)) * LOG_BASE;\r\n\r\n // Subtract the number of trailing zeros of the last word.\r\n w = d[w];\r\n if (w) for (; w % 10 == 0; w /= 10) n--;\r\n if (n < 0) n = 0;\r\n }\r\n\r\n return n;\r\n};\r\n\r\n\r\n/*\r\n * n / 0 = I\r\n * n / N = N\r\n * n / I = 0\r\n * 0 / n = 0\r\n * 0 / 0 = N\r\n * 0 / N = N\r\n * 0 / I = 0\r\n * N / n = N\r\n * N / 0 = N\r\n * N / N = N\r\n * N / I = N\r\n * I / n = I\r\n * I / 0 = I\r\n * I / N = N\r\n * I / I = N\r\n *\r\n * Return a new Decimal whose value is the value of this Decimal divided by `y`, rounded to\r\n * `precision` significant digits using rounding mode `rounding`.\r\n *\r\n */\r\nP.dividedBy = P.div = function (y) {\r\n return divide(this, new this.constructor(y));\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the integer part of dividing the value of this Decimal\r\n * by the value of `y`, rounded to `precision` significant digits using rounding mode `rounding`.\r\n *\r\n */\r\nP.dividedToIntegerBy = P.divToInt = function (y) {\r\n var x = this,\r\n Ctor = x.constructor;\r\n return finalise(divide(x, new Ctor(y), 0, 1, 1), Ctor.precision, Ctor.rounding);\r\n};\r\n\r\n\r\n/*\r\n * Return true if the value of this Decimal is equal to the value of `y`, otherwise return false.\r\n *\r\n */\r\nP.equals = P.eq = function (y) {\r\n return this.cmp(y) === 0;\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the value of this Decimal rounded to a whole number in the\r\n * direction of negative Infinity.\r\n *\r\n */\r\nP.floor = function () {\r\n return finalise(new this.constructor(this), this.e + 1, 3);\r\n};\r\n\r\n\r\n/*\r\n * Return true if the value of this Decimal is greater than the value of `y`, otherwise return\r\n * false.\r\n *\r\n */\r\nP.greaterThan = P.gt = function (y) {\r\n return this.cmp(y) > 0;\r\n};\r\n\r\n\r\n/*\r\n * Return true if the value of this Decimal is greater than or equal to the value of `y`,\r\n * otherwise return false.\r\n *\r\n */\r\nP.greaterThanOrEqualTo = P.gte = function (y) {\r\n var k = this.cmp(y);\r\n return k == 1 || k === 0;\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the hyperbolic cosine of the value in radians of this\r\n * Decimal.\r\n *\r\n * Domain: [-Infinity, Infinity]\r\n * Range: [1, Infinity]\r\n *\r\n * cosh(x) = 1 + x^2/2! + x^4/4! + x^6/6! + ...\r\n *\r\n * cosh(0) = 1\r\n * cosh(-0) = 1\r\n * cosh(Infinity) = Infinity\r\n * cosh(-Infinity) = Infinity\r\n * cosh(NaN) = NaN\r\n *\r\n * x time taken (ms) result\r\n * 1000 9 9.8503555700852349694e+433\r\n * 10000 25 4.4034091128314607936e+4342\r\n * 100000 171 1.4033316802130615897e+43429\r\n * 1000000 3817 1.5166076984010437725e+434294\r\n * 10000000 abandoned after 2 minute wait\r\n *\r\n * TODO? Compare performance of cosh(x) = 0.5 * (exp(x) + exp(-x))\r\n *\r\n */\r\nP.hyperbolicCosine = P.cosh = function () {\r\n var k, n, pr, rm, len,\r\n x = this,\r\n Ctor = x.constructor,\r\n one = new Ctor(1);\r\n\r\n if (!x.isFinite()) return new Ctor(x.s ? 1 / 0 : NaN);\r\n if (x.isZero()) return one;\r\n\r\n pr = Ctor.precision;\r\n rm = Ctor.rounding;\r\n Ctor.precision = pr + Math.max(x.e, x.sd()) + 4;\r\n Ctor.rounding = 1;\r\n len = x.d.length;\r\n\r\n // Argument reduction: cos(4x) = 1 - 8cos^2(x) + 8cos^4(x) + 1\r\n // i.e. cos(x) = 1 - cos^2(x/4)(8 - 8cos^2(x/4))\r\n\r\n // Estimate the optimum number of times to use the argument reduction.\r\n // TODO? Estimation reused from cosine() and may not be optimal here.\r\n if (len < 32) {\r\n k = Math.ceil(len / 3);\r\n n = (1 / tinyPow(4, k)).toString();\r\n } else {\r\n k = 16;\r\n n = '2.3283064365386962890625e-10';\r\n }\r\n\r\n x = taylorSeries(Ctor, 1, x.times(n), new Ctor(1), true);\r\n\r\n // Reverse argument reduction\r\n var cosh2_x,\r\n i = k,\r\n d8 = new Ctor(8);\r\n for (; i--;) {\r\n cosh2_x = x.times(x);\r\n x = one.minus(cosh2_x.times(d8.minus(cosh2_x.times(d8))));\r\n }\r\n\r\n return finalise(x, Ctor.precision = pr, Ctor.rounding = rm, true);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the hyperbolic sine of the value in radians of this\r\n * Decimal.\r\n *\r\n * Domain: [-Infinity, Infinity]\r\n * Range: [-Infinity, Infinity]\r\n *\r\n * sinh(x) = x + x^3/3! + x^5/5! + x^7/7! + ...\r\n *\r\n * sinh(0) = 0\r\n * sinh(-0) = -0\r\n * sinh(Infinity) = Infinity\r\n * sinh(-Infinity) = -Infinity\r\n * sinh(NaN) = NaN\r\n *\r\n * x time taken (ms)\r\n * 10 2 ms\r\n * 100 5 ms\r\n * 1000 14 ms\r\n * 10000 82 ms\r\n * 100000 886 ms 1.4033316802130615897e+43429\r\n * 200000 2613 ms\r\n * 300000 5407 ms\r\n * 400000 8824 ms\r\n * 500000 13026 ms 8.7080643612718084129e+217146\r\n * 1000000 48543 ms\r\n *\r\n * TODO? Compare performance of sinh(x) = 0.5 * (exp(x) - exp(-x))\r\n *\r\n */\r\nP.hyperbolicSine = P.sinh = function () {\r\n var k, pr, rm, len,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (!x.isFinite() || x.isZero()) return new Ctor(x);\r\n\r\n pr = Ctor.precision;\r\n rm = Ctor.rounding;\r\n Ctor.precision = pr + Math.max(x.e, x.sd()) + 4;\r\n Ctor.rounding = 1;\r\n len = x.d.length;\r\n\r\n if (len < 3) {\r\n x = taylorSeries(Ctor, 2, x, x, true);\r\n } else {\r\n\r\n // Alternative argument reduction: sinh(3x) = sinh(x)(3 + 4sinh^2(x))\r\n // i.e. sinh(x) = sinh(x/3)(3 + 4sinh^2(x/3))\r\n // 3 multiplications and 1 addition\r\n\r\n // Argument reduction: sinh(5x) = sinh(x)(5 + sinh^2(x)(20 + 16sinh^2(x)))\r\n // i.e. sinh(x) = sinh(x/5)(5 + sinh^2(x/5)(20 + 16sinh^2(x/5)))\r\n // 4 multiplications and 2 additions\r\n\r\n // Estimate the optimum number of times to use the argument reduction.\r\n k = 1.4 * Math.sqrt(len);\r\n k = k > 16 ? 16 : k | 0;\r\n\r\n x = x.times(1 / tinyPow(5, k));\r\n x = taylorSeries(Ctor, 2, x, x, true);\r\n\r\n // Reverse argument reduction\r\n var sinh2_x,\r\n d5 = new Ctor(5),\r\n d16 = new Ctor(16),\r\n d20 = new Ctor(20);\r\n for (; k--;) {\r\n sinh2_x = x.times(x);\r\n x = x.times(d5.plus(sinh2_x.times(d16.times(sinh2_x).plus(d20))));\r\n }\r\n }\r\n\r\n Ctor.precision = pr;\r\n Ctor.rounding = rm;\r\n\r\n return finalise(x, pr, rm, true);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the hyperbolic tangent of the value in radians of this\r\n * Decimal.\r\n *\r\n * Domain: [-Infinity, Infinity]\r\n * Range: [-1, 1]\r\n *\r\n * tanh(x) = sinh(x) / cosh(x)\r\n *\r\n * tanh(0) = 0\r\n * tanh(-0) = -0\r\n * tanh(Infinity) = 1\r\n * tanh(-Infinity) = -1\r\n * tanh(NaN) = NaN\r\n *\r\n */\r\nP.hyperbolicTangent = P.tanh = function () {\r\n var pr, rm,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (!x.isFinite()) return new Ctor(x.s);\r\n if (x.isZero()) return new Ctor(x);\r\n\r\n pr = Ctor.precision;\r\n rm = Ctor.rounding;\r\n Ctor.precision = pr + 7;\r\n Ctor.rounding = 1;\r\n\r\n return divide(x.sinh(), x.cosh(), Ctor.precision = pr, Ctor.rounding = rm);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the arccosine (inverse cosine) in radians of the value of\r\n * this Decimal.\r\n *\r\n * Domain: [-1, 1]\r\n * Range: [0, pi]\r\n *\r\n * acos(x) = pi/2 - asin(x)\r\n *\r\n * acos(0) = pi/2\r\n * acos(-0) = pi/2\r\n * acos(1) = 0\r\n * acos(-1) = pi\r\n * acos(1/2) = pi/3\r\n * acos(-1/2) = 2*pi/3\r\n * acos(|x| > 1) = NaN\r\n * acos(NaN) = NaN\r\n *\r\n */\r\nP.inverseCosine = P.acos = function () {\r\n var halfPi,\r\n x = this,\r\n Ctor = x.constructor,\r\n k = x.abs().cmp(1),\r\n pr = Ctor.precision,\r\n rm = Ctor.rounding;\r\n\r\n if (k !== -1) {\r\n return k === 0\r\n // |x| is 1\r\n ? x.isNeg() ? getPi(Ctor, pr, rm) : new Ctor(0)\r\n // |x| > 1 or x is NaN\r\n : new Ctor(NaN);\r\n }\r\n\r\n if (x.isZero()) return getPi(Ctor, pr + 4, rm).times(0.5);\r\n\r\n // TODO? Special case acos(0.5) = pi/3 and acos(-0.5) = 2*pi/3\r\n\r\n Ctor.precision = pr + 6;\r\n Ctor.rounding = 1;\r\n\r\n x = x.asin();\r\n halfPi = getPi(Ctor, pr + 4, rm).times(0.5);\r\n\r\n Ctor.precision = pr;\r\n Ctor.rounding = rm;\r\n\r\n return halfPi.minus(x);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the inverse of the hyperbolic cosine in radians of the\r\n * value of this Decimal.\r\n *\r\n * Domain: [1, Infinity]\r\n * Range: [0, Infinity]\r\n *\r\n * acosh(x) = ln(x + sqrt(x^2 - 1))\r\n *\r\n * acosh(x < 1) = NaN\r\n * acosh(NaN) = NaN\r\n * acosh(Infinity) = Infinity\r\n * acosh(-Infinity) = NaN\r\n * acosh(0) = NaN\r\n * acosh(-0) = NaN\r\n * acosh(1) = 0\r\n * acosh(-1) = NaN\r\n *\r\n */\r\nP.inverseHyperbolicCosine = P.acosh = function () {\r\n var pr, rm,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (x.lte(1)) return new Ctor(x.eq(1) ? 0 : NaN);\r\n if (!x.isFinite()) return new Ctor(x);\r\n\r\n pr = Ctor.precision;\r\n rm = Ctor.rounding;\r\n Ctor.precision = pr + Math.max(Math.abs(x.e), x.sd()) + 4;\r\n Ctor.rounding = 1;\r\n external = false;\r\n\r\n x = x.times(x).minus(1).sqrt().plus(x);\r\n\r\n external = true;\r\n Ctor.precision = pr;\r\n Ctor.rounding = rm;\r\n\r\n return x.ln();\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the inverse of the hyperbolic sine in radians of the value\r\n * of this Decimal.\r\n *\r\n * Domain: [-Infinity, Infinity]\r\n * Range: [-Infinity, Infinity]\r\n *\r\n * asinh(x) = ln(x + sqrt(x^2 + 1))\r\n *\r\n * asinh(NaN) = NaN\r\n * asinh(Infinity) = Infinity\r\n * asinh(-Infinity) = -Infinity\r\n * asinh(0) = 0\r\n * asinh(-0) = -0\r\n *\r\n */\r\nP.inverseHyperbolicSine = P.asinh = function () {\r\n var pr, rm,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (!x.isFinite() || x.isZero()) return new Ctor(x);\r\n\r\n pr = Ctor.precision;\r\n rm = Ctor.rounding;\r\n Ctor.precision = pr + 2 * Math.max(Math.abs(x.e), x.sd()) + 6;\r\n Ctor.rounding = 1;\r\n external = false;\r\n\r\n x = x.times(x).plus(1).sqrt().plus(x);\r\n\r\n external = true;\r\n Ctor.precision = pr;\r\n Ctor.rounding = rm;\r\n\r\n return x.ln();\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the inverse of the hyperbolic tangent in radians of the\r\n * value of this Decimal.\r\n *\r\n * Domain: [-1, 1]\r\n * Range: [-Infinity, Infinity]\r\n *\r\n * atanh(x) = 0.5 * ln((1 + x) / (1 - x))\r\n *\r\n * atanh(|x| > 1) = NaN\r\n * atanh(NaN) = NaN\r\n * atanh(Infinity) = NaN\r\n * atanh(-Infinity) = NaN\r\n * atanh(0) = 0\r\n * atanh(-0) = -0\r\n * atanh(1) = Infinity\r\n * atanh(-1) = -Infinity\r\n *\r\n */\r\nP.inverseHyperbolicTangent = P.atanh = function () {\r\n var pr, rm, wpr, xsd,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (!x.isFinite()) return new Ctor(NaN);\r\n if (x.e >= 0) return new Ctor(x.abs().eq(1) ? x.s / 0 : x.isZero() ? x : NaN);\r\n\r\n pr = Ctor.precision;\r\n rm = Ctor.rounding;\r\n xsd = x.sd();\r\n\r\n if (Math.max(xsd, pr) < 2 * -x.e - 1) return finalise(new Ctor(x), pr, rm, true);\r\n\r\n Ctor.precision = wpr = xsd - x.e;\r\n\r\n x = divide(x.plus(1), new Ctor(1).minus(x), wpr + pr, 1);\r\n\r\n Ctor.precision = pr + 4;\r\n Ctor.rounding = 1;\r\n\r\n x = x.ln();\r\n\r\n Ctor.precision = pr;\r\n Ctor.rounding = rm;\r\n\r\n return x.times(0.5);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the arcsine (inverse sine) in radians of the value of this\r\n * Decimal.\r\n *\r\n * Domain: [-Infinity, Infinity]\r\n * Range: [-pi/2, pi/2]\r\n *\r\n * asin(x) = 2*atan(x/(1 + sqrt(1 - x^2)))\r\n *\r\n * asin(0) = 0\r\n * asin(-0) = -0\r\n * asin(1/2) = pi/6\r\n * asin(-1/2) = -pi/6\r\n * asin(1) = pi/2\r\n * asin(-1) = -pi/2\r\n * asin(|x| > 1) = NaN\r\n * asin(NaN) = NaN\r\n *\r\n * TODO? Compare performance of Taylor series.\r\n *\r\n */\r\nP.inverseSine = P.asin = function () {\r\n var halfPi, k,\r\n pr, rm,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n if (x.isZero()) return new Ctor(x);\r\n\r\n k = x.abs().cmp(1);\r\n pr = Ctor.precision;\r\n rm = Ctor.rounding;\r\n\r\n if (k !== -1) {\r\n\r\n // |x| is 1\r\n if (k === 0) {\r\n halfPi = getPi(Ctor, pr + 4, rm).times(0.5);\r\n halfPi.s = x.s;\r\n return halfPi;\r\n }\r\n\r\n // |x| > 1 or x is NaN\r\n return new Ctor(NaN);\r\n }\r\n\r\n // TODO? Special case asin(1/2) = pi/6 and asin(-1/2) = -pi/6\r\n\r\n Ctor.precision = pr + 6;\r\n Ctor.rounding = 1;\r\n\r\n x = x.div(new Ctor(1).minus(x.times(x)).sqrt().plus(1)).atan();\r\n\r\n Ctor.precision = pr;\r\n Ctor.rounding = rm;\r\n\r\n return x.times(2);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the arctangent (inverse tangent) in radians of the value\r\n * of this Decimal.\r\n *\r\n * Domain: [-Infinity, Infinity]\r\n * Range: [-pi/2, pi/2]\r\n *\r\n * atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...\r\n *\r\n * atan(0) = 0\r\n * atan(-0) = -0\r\n * atan(1) = pi/4\r\n * atan(-1) = -pi/4\r\n * atan(Infinity) = pi/2\r\n * atan(-Infinity) = -pi/2\r\n * atan(NaN) = NaN\r\n *\r\n */\r\nP.inverseTangent = P.atan = function () {\r\n var i, j, k, n, px, t, r, wpr, x2,\r\n x = this,\r\n Ctor = x.constructor,\r\n pr = Ctor.precision,\r\n rm = Ctor.rounding;\r\n\r\n if (!x.isFinite()) {\r\n if (!x.s) return new Ctor(NaN);\r\n if (pr + 4 <= PI_PRECISION) {\r\n r = getPi(Ctor, pr + 4, rm).times(0.5);\r\n r.s = x.s;\r\n return r;\r\n }\r\n } else if (x.isZero()) {\r\n return new Ctor(x);\r\n } else if (x.abs().eq(1) && pr + 4 <= PI_PRECISION) {\r\n r = getPi(Ctor, pr + 4, rm).times(0.25);\r\n r.s = x.s;\r\n return r;\r\n }\r\n\r\n Ctor.precision = wpr = pr + 10;\r\n Ctor.rounding = 1;\r\n\r\n // TODO? if (x >= 1 && pr <= PI_PRECISION) atan(x) = halfPi * x.s - atan(1 / x);\r\n\r\n // Argument reduction\r\n // Ensure |x| < 0.42\r\n // atan(x) = 2 * atan(x / (1 + sqrt(1 + x^2)))\r\n\r\n k = Math.min(28, wpr / LOG_BASE + 2 | 0);\r\n\r\n for (i = k; i; --i) x = x.div(x.times(x).plus(1).sqrt().plus(1));\r\n\r\n external = false;\r\n\r\n j = Math.ceil(wpr / LOG_BASE);\r\n n = 1;\r\n x2 = x.times(x);\r\n r = new Ctor(x);\r\n px = x;\r\n\r\n // atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...\r\n for (; i !== -1;) {\r\n px = px.times(x2);\r\n t = r.minus(px.div(n += 2));\r\n\r\n px = px.times(x2);\r\n r = t.plus(px.div(n += 2));\r\n\r\n if (r.d[j] !== void 0) for (i = j; r.d[i] === t.d[i] && i--;);\r\n }\r\n\r\n if (k) r = r.times(2 << (k - 1));\r\n\r\n external = true;\r\n\r\n return finalise(r, Ctor.precision = pr, Ctor.rounding = rm, true);\r\n};\r\n\r\n\r\n/*\r\n * Return true if the value of this Decimal is a finite number, otherwise return false.\r\n *\r\n */\r\nP.isFinite = function () {\r\n return !!this.d;\r\n};\r\n\r\n\r\n/*\r\n * Return true if the value of this Decimal is an integer, otherwise return false.\r\n *\r\n */\r\nP.isInteger = P.isInt = function () {\r\n return !!this.d && mathfloor(this.e / LOG_BASE) > this.d.length - 2;\r\n};\r\n\r\n\r\n/*\r\n * Return true if the value of this Decimal is NaN, otherwise return false.\r\n *\r\n */\r\nP.isNaN = function () {\r\n return !this.s;\r\n};\r\n\r\n\r\n/*\r\n * Return true if the value of this Decimal is negative, otherwise return false.\r\n *\r\n */\r\nP.isNegative = P.isNeg = function () {\r\n return this.s < 0;\r\n};\r\n\r\n\r\n/*\r\n * Return true if the value of this Decimal is positive, otherwise return false.\r\n *\r\n */\r\nP.isPositive = P.isPos = function () {\r\n return this.s > 0;\r\n};\r\n\r\n\r\n/*\r\n * Return true if the value of this Decimal is 0 or -0, otherwise return false.\r\n *\r\n */\r\nP.isZero = function () {\r\n return !!this.d && this.d[0] === 0;\r\n};\r\n\r\n\r\n/*\r\n * Return true if the value of this Decimal is less than `y`, otherwise return false.\r\n *\r\n */\r\nP.lessThan = P.lt = function (y) {\r\n return this.cmp(y) < 0;\r\n};\r\n\r\n\r\n/*\r\n * Return true if the value of this Decimal is less than or equal to `y`, otherwise return false.\r\n *\r\n */\r\nP.lessThanOrEqualTo = P.lte = function (y) {\r\n return this.cmp(y) < 1;\r\n};\r\n\r\n\r\n/*\r\n * Return the logarithm of the value of this Decimal to the specified base, rounded to `precision`\r\n * significant digits using rounding mode `rounding`.\r\n *\r\n * If no base is specified, return log[10](arg).\r\n *\r\n * log[base](arg) = ln(arg) / ln(base)\r\n *\r\n * The result will always be correctly rounded if the base of the log is 10, and 'almost always'\r\n * otherwise:\r\n *\r\n * Depending on the rounding mode, the result may be incorrectly rounded if the first fifteen\r\n * rounding digits are [49]99999999999999 or [50]00000000000000. In that case, the maximum error\r\n * between the result and the correctly rounded result will be one ulp (unit in the last place).\r\n *\r\n * log[-b](a) = NaN\r\n * log[0](a) = NaN\r\n * log[1](a) = NaN\r\n * log[NaN](a) = NaN\r\n * log[Infinity](a) = NaN\r\n * log[b](0) = -Infinity\r\n * log[b](-0) = -Infinity\r\n * log[b](-a) = NaN\r\n * log[b](1) = 0\r\n * log[b](Infinity) = Infinity\r\n * log[b](NaN) = NaN\r\n *\r\n * [base] {number|string|Decimal} The base of the logarithm.\r\n *\r\n */\r\nP.logarithm = P.log = function (base) {\r\n var isBase10, d, denominator, k, inf, num, sd, r,\r\n arg = this,\r\n Ctor = arg.constructor,\r\n pr = Ctor.precision,\r\n rm = Ctor.rounding,\r\n guard = 5;\r\n\r\n // Default base is 10.\r\n if (base == null) {\r\n base = new Ctor(10);\r\n isBase10 = true;\r\n } else {\r\n base = new Ctor(base);\r\n d = base.d;\r\n\r\n // Return NaN if base is negative, or non-finite, or is 0 or 1.\r\n if (base.s < 0 || !d || !d[0] || base.eq(1)) return new Ctor(NaN);\r\n\r\n isBase10 = base.eq(10);\r\n }\r\n\r\n d = arg.d;\r\n\r\n // Is arg negative, non-finite, 0 or 1?\r\n if (arg.s < 0 || !d || !d[0] || arg.eq(1)) {\r\n return new Ctor(d && !d[0] ? -1 / 0 : arg.s != 1 ? NaN : d ? 0 : 1 / 0);\r\n }\r\n\r\n // The result will have a non-terminating decimal expansion if base is 10 and arg is not an\r\n // integer power of 10.\r\n if (isBase10) {\r\n if (d.length > 1) {\r\n inf = true;\r\n } else {\r\n for (k = d[0]; k % 10 === 0;) k /= 10;\r\n inf = k !== 1;\r\n }\r\n }\r\n\r\n external = false;\r\n sd = pr + guard;\r\n num = naturalLogarithm(arg, sd);\r\n denominator = isBase10 ? getLn10(Ctor, sd + 10) : naturalLogarithm(base, sd);\r\n\r\n // The result will have 5 rounding digits.\r\n r = divide(num, denominator, sd, 1);\r\n\r\n // If at a rounding boundary, i.e. the result's rounding digits are [49]9999 or [50]0000,\r\n // calculate 10 further digits.\r\n //\r\n // If the result is known to have an infinite decimal expansion, repeat this until it is clear\r\n // that the result is above or below the boundary. Otherwise, if after calculating the 10\r\n // further digits, the last 14 are nines, round up and assume the result is exact.\r\n // Also assume the result is exact if the last 14 are zero.\r\n //\r\n // Example of a result that will be incorrectly rounded:\r\n // log[1048576](4503599627370502) = 2.60000000000000009610279511444746...\r\n // The above result correctly rounded using ROUND_CEIL to 1 decimal place should be 2.7, but it\r\n // will be given as 2.6 as there are 15 zeros immediately after the requested decimal place, so\r\n // the exact result would be assumed to be 2.6, which rounded using ROUND_CEIL to 1 decimal\r\n // place is still 2.6.\r\n if (checkRoundingDigits(r.d, k = pr, rm)) {\r\n\r\n do {\r\n sd += 10;\r\n num = naturalLogarithm(arg, sd);\r\n denominator = isBase10 ? getLn10(Ctor, sd + 10) : naturalLogarithm(base, sd);\r\n r = divide(num, denominator, sd, 1);\r\n\r\n if (!inf) {\r\n\r\n // Check for 14 nines from the 2nd rounding digit, as the first may be 4.\r\n if (+digitsToString(r.d).slice(k + 1, k + 15) + 1 == 1e14) {\r\n r = finalise(r, pr + 1, 0);\r\n }\r\n\r\n break;\r\n }\r\n } while (checkRoundingDigits(r.d, k += 10, rm));\r\n }\r\n\r\n external = true;\r\n\r\n return finalise(r, pr, rm);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the maximum of the arguments and the value of this Decimal.\r\n *\r\n * arguments {number|string|Decimal}\r\n *\r\nP.max = function () {\r\n Array.prototype.push.call(arguments, this);\r\n return maxOrMin(this.constructor, arguments, 'lt');\r\n};\r\n */\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the minimum of the arguments and the value of this Decimal.\r\n *\r\n * arguments {number|string|Decimal}\r\n *\r\nP.min = function () {\r\n Array.prototype.push.call(arguments, this);\r\n return maxOrMin(this.constructor, arguments, 'gt');\r\n};\r\n */\r\n\r\n\r\n/*\r\n * n - 0 = n\r\n * n - N = N\r\n * n - I = -I\r\n * 0 - n = -n\r\n * 0 - 0 = 0\r\n * 0 - N = N\r\n * 0 - I = -I\r\n * N - n = N\r\n * N - 0 = N\r\n * N - N = N\r\n * N - I = N\r\n * I - n = I\r\n * I - 0 = I\r\n * I - N = N\r\n * I - I = N\r\n *\r\n * Return a new Decimal whose value is the value of this Decimal minus `y`, rounded to `precision`\r\n * significant digits using rounding mode `rounding`.\r\n *\r\n */\r\nP.minus = P.sub = function (y) {\r\n var d, e, i, j, k, len, pr, rm, xd, xe, xLTy, yd,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n y = new Ctor(y);\r\n\r\n // If either is not finite...\r\n if (!x.d || !y.d) {\r\n\r\n // Return NaN if either is NaN.\r\n if (!x.s || !y.s) y = new Ctor(NaN);\r\n\r\n // Return y negated if x is finite and y is ±Infinity.\r\n else if (x.d) y.s = -y.s;\r\n\r\n // Return x if y is finite and x is ±Infinity.\r\n // Return x if both are ±Infinity with different signs.\r\n // Return NaN if both are ±Infinity with the same sign.\r\n else y = new Ctor(y.d || x.s !== y.s ? x : NaN);\r\n\r\n return y;\r\n }\r\n\r\n // If signs differ...\r\n if (x.s != y.s) {\r\n y.s = -y.s;\r\n return x.plus(y);\r\n }\r\n\r\n xd = x.d;\r\n yd = y.d;\r\n pr = Ctor.precision;\r\n rm = Ctor.rounding;\r\n\r\n // If either is zero...\r\n if (!xd[0] || !yd[0]) {\r\n\r\n // Return y negated if x is zero and y is non-zero.\r\n if (yd[0]) y.s = -y.s;\r\n\r\n // Return x if y is zero and x is non-zero.\r\n else if (xd[0]) y = new Ctor(x);\r\n\r\n // Return zero if both are zero.\r\n // From IEEE 754 (2008) 6.3: 0 - 0 = -0 - -0 = -0 when rounding to -Infinity.\r\n else return new Ctor(rm === 3 ? -0 : 0);\r\n\r\n return external ? finalise(y, pr, rm) : y;\r\n }\r\n\r\n // x and y are finite, non-zero numbers with the same sign.\r\n\r\n // Calculate base 1e7 exponents.\r\n e = mathfloor(y.e / LOG_BASE);\r\n xe = mathfloor(x.e / LOG_BASE);\r\n\r\n xd = xd.slice();\r\n k = xe - e;\r\n\r\n // If base 1e7 exponents differ...\r\n if (k) {\r\n xLTy = k < 0;\r\n\r\n if (xLTy) {\r\n d = xd;\r\n k = -k;\r\n len = yd.length;\r\n } else {\r\n d = yd;\r\n e = xe;\r\n len = xd.length;\r\n }\r\n\r\n // Numbers with massively different exponents would result in a very high number of\r\n // zeros needing to be prepended, but this can be avoided while still ensuring correct\r\n // rounding by limiting the number of zeros to `Math.ceil(pr / LOG_BASE) + 2`.\r\n i = Math.max(Math.ceil(pr / LOG_BASE), len) + 2;\r\n\r\n if (k > i) {\r\n k = i;\r\n d.length = 1;\r\n }\r\n\r\n // Prepend zeros to equalise exponents.\r\n d.reverse();\r\n for (i = k; i--;) d.push(0);\r\n d.reverse();\r\n\r\n // Base 1e7 exponents equal.\r\n } else {\r\n\r\n // Check digits to determine which is the bigger number.\r\n\r\n i = xd.length;\r\n len = yd.length;\r\n xLTy = i < len;\r\n if (xLTy) len = i;\r\n\r\n for (i = 0; i < len; i++) {\r\n if (xd[i] != yd[i]) {\r\n xLTy = xd[i] < yd[i];\r\n break;\r\n }\r\n }\r\n\r\n k = 0;\r\n }\r\n\r\n if (xLTy) {\r\n d = xd;\r\n xd = yd;\r\n yd = d;\r\n y.s = -y.s;\r\n }\r\n\r\n len = xd.length;\r\n\r\n // Append zeros to `xd` if shorter.\r\n // Don't add zeros to `yd` if shorter as subtraction only needs to start at `yd` length.\r\n for (i = yd.length - len; i > 0; --i) xd[len++] = 0;\r\n\r\n // Subtract yd from xd.\r\n for (i = yd.length; i > k;) {\r\n\r\n if (xd[--i] < yd[i]) {\r\n for (j = i; j && xd[--j] === 0;) xd[j] = BASE - 1;\r\n --xd[j];\r\n xd[i] += BASE;\r\n }\r\n\r\n xd[i] -= yd[i];\r\n }\r\n\r\n // Remove trailing zeros.\r\n for (; xd[--len] === 0;) xd.pop();\r\n\r\n // Remove leading zeros and adjust exponent accordingly.\r\n for (; xd[0] === 0; xd.shift()) --e;\r\n\r\n // Zero?\r\n if (!xd[0]) return new Ctor(rm === 3 ? -0 : 0);\r\n\r\n y.d = xd;\r\n y.e = getBase10Exponent(xd, e);\r\n\r\n return external ? finalise(y, pr, rm) : y;\r\n};\r\n\r\n\r\n/*\r\n * n % 0 = N\r\n * n % N = N\r\n * n % I = n\r\n * 0 % n = 0\r\n * -0 % n = -0\r\n * 0 % 0 = N\r\n * 0 % N = N\r\n * 0 % I = 0\r\n * N % n = N\r\n * N % 0 = N\r\n * N % N = N\r\n * N % I = N\r\n * I % n = N\r\n * I % 0 = N\r\n * I % N = N\r\n * I % I = N\r\n *\r\n * Return a new Decimal whose value is the value of this Decimal modulo `y`, rounded to\r\n * `precision` significant digits using rounding mode `rounding`.\r\n *\r\n * The result depends on the modulo mode.\r\n *\r\n */\r\nP.modulo = P.mod = function (y) {\r\n var q,\r\n x = this,\r\n Ctor = x.constructor;\r\n\r\n y = new Ctor(y);\r\n\r\n // Return NaN if x is ±Infinity or NaN, or y is NaN or ±0.\r\n if (!x.d || !y.s || y.d && !y.d[0]) return new Ctor(NaN);\r\n\r\n // Return x if y is ±Infinity or x is ±0.\r\n if (!y.d || x.d && !x.d[0]) {\r\n return finalise(new Ctor(x), Ctor.precision, Ctor.rounding);\r\n }\r\n\r\n // Prevent rounding of intermediate calculations.\r\n external = false;\r\n\r\n if (Ctor.modulo == 9) {\r\n\r\n // Euclidian division: q = sign(y) * floor(x / abs(y))\r\n // result = x - q * y where 0 <= result < abs(y)\r\n q = divide(x, y.abs(), 0, 3, 1);\r\n q.s *= y.s;\r\n } else {\r\n q = divide(x, y, 0, Ctor.modulo, 1);\r\n }\r\n\r\n q = q.times(y);\r\n\r\n external = true;\r\n\r\n return x.minus(q);\r\n};\r\n\r\n\r\n/*\r\n * Return a new Decimal whose value is the natural exponential of the value of this Decimal,\r\n * i.e. the base e raised to the power the value of this Decimal, r